Damage Severity Quantification Using Wavelet Packet Transform and Peak Picking Method

Author(s):  
Pouyan Fakharian ◽  
Hosein Naderpour
2017 ◽  
Vol 229 (3) ◽  
pp. 1275-1295 ◽  
Author(s):  
N. Jamia ◽  
P. Rajendran ◽  
S. El-Borgi ◽  
M. I. Friswell

2007 ◽  
Vol 46 (15) ◽  
pp. 5152-5158 ◽  
Author(s):  
J. Jay Liu ◽  
Daeyoun Kim ◽  
Chonghun Han

Author(s):  
PARUL SHAH ◽  
S. N. MERCHANT ◽  
U. B. DESAI

This paper presents two methods for fusion of infrared (IR) and visible surveillance images. The first method combines Curvelet Transform (CT) with Discrete Wavelet Transform (DWT). As wavelets do not represent long edges well while curvelets are challenged with small features, our objective is to combine both to achieve better performance. The second approach uses Discrete Wavelet Packet Transform (DWPT), which provides multiresolution in high frequency band as well and hence helps in handling edges better. The performance of the proposed methods have been extensively tested for a number of multimodal surveillance images and compared with various existing transform domain fusion methods. Experimental results show that evaluation based on entropy, gradient, contrast etc., the criteria normally used, are not enough, as in some cases, these criteria are not consistent with the visual quality. It also demonstrates that the Petrovic and Xydeas image fusion metric is a more appropriate criterion for fusion of IR and visible images, as in all the tested fused images, visual quality agrees with the Petrovic and Xydeas metric evaluation. The analysis shows that there is significant increase in the quality of fused image, both visually and quantitatively. The major achievement of the proposed fusion methods is its reduced artifacts, one of the most desired feature for fusion used in surveillance applications.


Sign in / Sign up

Export Citation Format

Share Document