scholarly journals The Parkes Pulsar Timing Array Project

Author(s):  
R. N. Manchester ◽  
C. Bassa ◽  
Z. Wang ◽  
A. Cumming ◽  
V. M. Kaspi
2020 ◽  
Vol 501 (1) ◽  
pp. 701-712
Author(s):  
N Yonemaru ◽  
S Kuroyanagi ◽  
G Hobbs ◽  
K Takahashi ◽  
X-J Zhu ◽  
...  

ABSTRACT Cosmic strings are potential gravitational-wave (GW) sources that can be probed by pulsar timing arrays (PTAs). In this work we develop a detection algorithm for a GW burst from a cusp on a cosmic string, and apply it to Parkes PTA data. We find four events with a false alarm probability less than 1 per cent. However further investigation shows that all of these are likely to be spurious. As there are no convincing detections we place upper limits on the GW amplitude for different event durations. From these bounds we place limits on the cosmic string tension of Gμ ∼ 10−5, and highlight that this bound is independent from those obtained using other techniques. We discuss the physical implications of our results and the prospect of probing cosmic strings in the era of Square Kilometre Array.


2017 ◽  
Vol 13 (S337) ◽  
pp. 179-182 ◽  
Author(s):  
Cherry Ng

AbstractThe CHIME telescope (the Canadian Hydrogen Intensity Mapping Experiment) recently built in Penticton, Canada, is currently being commissioned. Originally designed as a cosmology experiment, it was soon recognized that CHIME has the potential to simultaneously serve as an incredibly useful radio telescope for pulsar science. CHIME operates across a wide bandwidth of 400–800 MHz and will have a collecting area and sensitivity comparable to that of the 100-m class radio telescopes. CHIME has a huge field of view of ~250 square degrees. It will be capable of observing 10 pulsars simultaneously, 24-hours per day, every day, while still accomplishing its missions to study Baryon Acoustic Oscillations and Fast Radio Bursts. It will carry out daily monitoring of roughly half of all pulsars in the northern hemisphere, including all NANOGrav pulsars employed in the Pulsar Timing Array project. It will cycle through all pulsars in the northern hemisphere with a range of cadence of no more than 10 days.


2011 ◽  
Author(s):  
D. R. B. Yardley ◽  
W. A. Coles ◽  
G. B. Hobbs ◽  
R. N. Manchester ◽  
Marta Burgay ◽  
...  

2018 ◽  
Vol 481 (4) ◽  
pp. 5501-5516 ◽  
Author(s):  
R N Caballero ◽  
Y J Guo ◽  
K J Lee ◽  
P Lazarus ◽  
D J Champion ◽  
...  

2012 ◽  
Vol 425 (2) ◽  
pp. 1597-1597 ◽  
Author(s):  
R. van Haasteren ◽  
Y. Levin ◽  
G. H. Janssen ◽  
K. Lazaridis ◽  
M. Kramer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document