New coefficient of three-term conjugate gradient method for solving unconstrained optimization problems

2019 ◽  
Author(s):  
Nurul Hafawati Fadhilah ◽  
Mohd Rivaie ◽  
Fuziyah Ishak ◽  
Nur Idalisa
Author(s):  
Pro Kaelo ◽  
Sindhu Narayanan ◽  
M.V. Thuto

This article presents a modified quadratic hybridization of the Polak–Ribiere–Polyak and Fletcher–Reeves conjugate gradient method for solving unconstrained optimization problems. Global convergence, with the strong Wolfe line search conditions, of the proposed quadratic hybrid conjugate gradient method is established. We also report some numerical results to show the competitiveness of the new hybrid method.


Algorithms ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 227
Author(s):  
Zabidin Salleh ◽  
Ghaliah Alhamzi ◽  
Ibitsam Masmali ◽  
Ahmad Alhawarat

The conjugate gradient method is one of the most popular methods to solve large-scale unconstrained optimization problems since it does not require the second derivative, such as Newton’s method or approximations. Moreover, the conjugate gradient method can be applied in many fields such as neural networks, image restoration, etc. Many complicated methods are proposed to solve these optimization functions in two or three terms. In this paper, we propose a simple, easy, efficient, and robust conjugate gradient method. The new method is constructed based on the Liu and Storey method to overcome the convergence problem and descent property. The new modified method satisfies the convergence properties and the sufficient descent condition under some assumptions. The numerical results show that the new method outperforms famous CG methods such as CG-Descent5.3, Liu and Storey, and Dai and Liao. The numerical results include the number of iterations and CPU time.


2018 ◽  
Vol 7 (3.28) ◽  
pp. 92
Author(s):  
Talat Alkouli ◽  
Mustafa Mamat ◽  
Mohd Rivaie ◽  
Puspa Liza Ghazali

In this paper, an efficient modification of nonlinear conjugate gradient method and an associated implementation, based on an exact line search, are proposed and analyzed to solve large-scale unconstrained optimization problems. The method satisfies the sufficient descent property. Furthermore, global convergence result is proved. Computational results for a set of unconstrained optimization test problems, some of them from CUTE library, showed that this new conjugate gradient algorithm seems to converge more stable and outperforms the other similar methods in many situations.   


Sign in / Sign up

Export Citation Format

Share Document