A PRP-HS Type Hybrid Nonlinear Conjugate Gradient Method for Solving Unconstrained Optimization Problems

Author(s):  
Olawale J. Adeleke ◽  
Micheal O. Olusanya ◽  
Idowu A. Osinuga
2018 ◽  
Vol 29 (1) ◽  
pp. 133
Author(s):  
Basim A. Hassan ◽  
Haneen A. Alashoor

The nonlinear conjugate gradient method is widely used to solve unconstrained optimization problems. In this paper the development of different versions of nonlinear conjugate gradient methods with global convergence properties proved. Numerical results indicated that the proposed method is very efficient.


Algorithms ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 133 ◽  
Author(s):  
Xiuyun Zheng ◽  
Jiarong Shi

In this paper, a modification to the Polak–Ribiére–Polyak (PRP) nonlinear conjugate gradient method is presented. The proposed method always generates a sufficient descent direction independent of the accuracy of the line search and the convexity of the objective function. Under appropriate conditions, the modified method is proved to possess global convergence under the Wolfe or Armijo-type line search. Moreover, the proposed methodology is adopted in the Hestenes–Stiefel (HS) and Liu–Storey (LS) methods. Extensive preliminary numerical experiments are used to illustrate the efficiency of the proposed method.


2011 ◽  
Vol 2011 ◽  
pp. 1-22
Author(s):  
Liu Jin-kui ◽  
Zou Li-min ◽  
Song Xiao-qian

A modified PRP nonlinear conjugate gradient method to solve unconstrained optimization problems is proposed. The important property of the proposed method is that the sufficient descent property is guaranteed independent of any line search. By the use of the Wolfe line search, the global convergence of the proposed method is established for nonconvex minimization. Numerical results show that the proposed method is effective and promising by comparing with the VPRP, CG-DESCENT, and DL+methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Shengwei Yao ◽  
Xiwen Lu ◽  
Bin Qin

The conjugate gradient (CG) method has played a special role in solving large-scale nonlinear optimization problems due to the simplicity of their very low memory requirements. In this paper, we propose a new conjugacy condition which is similar to Dai-Liao (2001). Based on this condition, the related nonlinear conjugate gradient method is given. With some mild conditions, the given method is globally convergent under the strong Wolfe-Powell line search for general functions. The numerical experiments show that the proposed method is very robust and efficient.


Sign in / Sign up

Export Citation Format

Share Document