scholarly journals Identification of partial differential equation models for a class of multiscale spatio-temporal dynamical systems

2009 ◽  
Vol 83 (1) ◽  
pp. 40-48 ◽  
Author(s):  
L.Z. Guo ◽  
S.A. Billings ◽  
D. Coca
Author(s):  
Michael Doebeli

This chapter discusses partial differential equation models. Partial differential equations can describe the dynamics of phenotype distributions of polymorphic populations, and they allow for a mathematically concise formulation from which some analytical insights can be obtained. It has been argued that because partial differential equations can describe polymorphic populations, results from such models are fundamentally different from those obtained using adaptive dynamics. In partial differential equation models, diversification manifests itself as pattern formation in phenotype distribution. More precisely, diversification occurs when phenotype distributions become multimodal, with the different modes corresponding to phenotypic clusters, or to species in sexual models. Such pattern formation occurs in partial differential equation models for competitive as well as for predator–prey interactions.


1975 ◽  
Vol 7 (02) ◽  
pp. 299-329 ◽  
Author(s):  
V. E. Beneš

This paper considers certain stochastic control problems in which control affects the criterion through the process trajectory. Special analytical methods are developed to solve such problems for certain dynamical systems forced by white noise. It is found that some control problems hitherto approachable only through laborious numerical treatment of the non-linear Bellman-Hamilton-Jacobi partial differential equation can now be solved.


1985 ◽  
Vol 5 (3) ◽  
pp. 437-443 ◽  
Author(s):  
R. Rudnicki

AbstractWe prove that the dynamical systems generated by first order partial differential equations are K-flows and chaotic in the sense of Auslander & Yorke.


Sign in / Sign up

Export Citation Format

Share Document