cyber attacks
Recently Published Documents


TOTAL DOCUMENTS

2614
(FIVE YEARS 2010)

H-INDEX

36
(FIVE YEARS 26)

2022 ◽  
Vol 22 (2) ◽  
pp. 1-27
Author(s):  
Tingmin Wu ◽  
Wanlun Ma ◽  
Sheng Wen ◽  
Xin Xia ◽  
Cecile Paris ◽  
...  

Computer users are generally faced with difficulties in making correct security decisions. While an increasingly fewer number of people are trying or willing to take formal security training, online sources including news, security blogs, and websites are continuously making security knowledge more accessible. Analysis of cybersecurity texts from this grey literature can provide insights into the trending topics and identify current security issues as well as how cyber attacks evolve over time. These in turn can support researchers and practitioners in predicting and preparing for these attacks. Comparing different sources may facilitate the learning process for normal users by creating the patterns of the security knowledge gained from different sources. Prior studies neither systematically analysed the wide range of digital sources nor provided any standardisation in analysing the trending topics from recent security texts. Moreover, existing topic modelling methods are not capable of identifying the cybersecurity concepts completely and the generated topics considerably overlap. To address this issue, we propose a semi-automated classification method to generate comprehensive security categories to analyse trending topics. We further compare the identified 16 security categories across different sources based on their popularity and impact. We have revealed several surprising findings as follows: (1) The impact reflected from cybersecurity texts strongly correlates with the monetary loss caused by cybercrimes, (2) security blogs have produced the context of cybersecurity most intensively, and (3) websites deliver security information without caring about timeliness much.


Automatica ◽  
2022 ◽  
Vol 137 ◽  
pp. 110091
Author(s):  
Jun Yang ◽  
Wen-An Zhang ◽  
Fanghong Guo
Keyword(s):  

2022 ◽  
Vol 30 (2) ◽  
pp. 0-0

The rapid development of cross-border e-commerce over the past decade has accelerated the integration of the global economy. At the same time, cross-border e-commerce has increased the prevalence of cybercrime, and the future success of e-commerce depends on enhanced online privacy and security. However, investigating security incidents is time- and cost-intensive as identifying telltale anomalies and the source of attacks requires the use of multiple forensic tools and technologies and security domain knowledge. Prompt responses to cyber-attacks are important to reduce damage and loss and to improve the security of cross-border e-commerce. This article proposes a digital forensic model for first incident responders to identify suspicious system behaviors. A prototype system is developed and evaluated by incident response handlers. The model and system are proven to help reduce time and effort in investigating cyberattacks. The proposed model is expected to enhance security incident handling efficiency for cross-border e-commerce.


2022 ◽  
Vol 30 (2) ◽  
pp. 1-19
Author(s):  
Chia-Mei Chen ◽  
Zheng-Xun Cai ◽  
Dan-Wei (Marian) Wen

The rapid development of cross-border e-commerce over the past decade has accelerated the integration of the global economy. At the same time, cross-border e-commerce has increased the prevalence of cybercrime, and the future success of e-commerce depends on enhanced online privacy and security. However, investigating security incidents is time- and cost-intensive as identifying telltale anomalies and the source of attacks requires the use of multiple forensic tools and technologies and security domain knowledge. Prompt responses to cyber-attacks are important to reduce damage and loss and to improve the security of cross-border e-commerce. This article proposes a digital forensic model for first incident responders to identify suspicious system behaviors. A prototype system is developed and evaluated by incident response handlers. The model and system are proven to help reduce time and effort in investigating cyberattacks. The proposed model is expected to enhance security incident handling efficiency for cross-border e-commerce.


2022 ◽  
Vol 31 (1) ◽  
pp. 1-27
Author(s):  
Yaqin Zhou ◽  
Jing Kai Siow ◽  
Chenyu Wang ◽  
Shangqing Liu ◽  
Yang Liu

Security patches in open source software, providing security fixes to identified vulnerabilities, are crucial in protecting against cyber attacks. Security advisories and announcements are often publicly released to inform the users about potential security vulnerability. Despite the National Vulnerability Database (NVD) publishes identified vulnerabilities, a vast majority of vulnerabilities and their corresponding security patches remain beyond public exposure, e.g., in the open source libraries that are heavily relied on by developers. As many of these patches exist in open sourced projects, the problem of curating and gathering security patches can be difficult due to their hidden nature. An extensive and complete security patches dataset could help end-users such as security companies, e.g., building a security knowledge base, or researcher, e.g., aiding in vulnerability research. To efficiently curate security patches including undisclosed patches at large scale and low cost, we propose a deep neural-network-based approach built upon commits of open source repositories. First, we design and build security patch datasets that include 38,291 security-related commits and 1,045 Common Vulnerabilities and Exposures (CVE) patches from four large-scale C programming language libraries. We manually verify each commit, among the 38,291 security-related commits, to determine if they are security related. We devise and implement a deep learning-based security patch identification system that consists of two composite neural networks: one commit-message neural network that utilizes pretrained word representations learned from our commits dataset and one code-revision neural network that takes code before revision and after revision and learns the distinction on the statement level. Our system leverages the power of the two networks for Security Patch Identification. Evaluation results show that our system significantly outperforms SVM and K-fold stacking algorithms. The result on the combined dataset achieves as high as 87.93% F1-score and precision of 86.24%. We deployed our pipeline and learned model in an industrial production environment to evaluate the generalization ability of our approach. The industrial dataset consists of 298,917 commits from 410 new libraries that range from a wide functionalities. Our experiment results and observation on the industrial dataset proved that our approach can identify security patches effectively among open sourced projects.


Author(s):  
Arunabh Singh

Abstract: In this paper we attempt to explain and establish certain frameworks that can be assessed for implementing security systems against cyber-threats and cyber-criminals. We give a brief overview of electronic signature generation procedures which include its validation and efficiency for promoting cyber security for confidential documents and information stored in the cloud. We strictly avoid the mathematical modelling of the electronic signature generation process as it is beyond the scope of this paper, instead we take a theoretical approach to explain the procedures. We also model the threats posed by a malicious hacker seeking to induce disturbances in the functioning of a power transmission grid via the means of cyber-physical networks and systems. We use the strategy of a load redistribution attack, while clearly acknowledging that the hacker would form its decision policy on inadequate information. Our research indicate that inaccurate admittance values often cause moderately invasive cyber-attacks that still compromise the grid security, while inadequate capacity values result in comparatively less efficient attacks. In the end we propose a security framework for the security systems utilised by companies and corporations at global scale to conduct cyber-security related operations. Keywords: Electronic signature, Key pair, sequence modelling, hacker, power transmission grid, Threat response, framework.


Healthcare ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 159
Author(s):  
Lisa Monoscalco ◽  
Rossella Simeoni ◽  
Giovanni Maccioni ◽  
Daniele Giansanti

Cybersecurity is becoming an increasingly important aspect to investigate for the adoption and use of care robots, in term of both patients’ safety, and the availability, integrity and privacy of their data. This study focuses on opinions about cybersecurity relevance and related skills for physiotherapists involved in rehabilitation and assistance thanks to the aid of robotics. The goal was to investigate the awareness among insiders about some facets of cybersecurity concerning human–robot interactions. We designed an electronic questionnaire and submitted it to a relevant sample of physiotherapists. The questionnaire allowed us to collect data related to: (i) use of robots and its relationship with cybersecurity in the context of physiotherapy; (ii) training in cybersecurity and robotics for the insiders; (iii) insiders’ self-assessment on cybersecurity and robotics in some usage scenarios, and (iv) their experiences of cyber-attacks in this area and proposals for improvement. Besides contributing some specific statistics, the study highlights the importance of both acculturation processes in this field and monitoring initiatives based on surveys. The study exposes direct suggestions for continuation of these types of investigations in the context of scientific societies operating in the rehabilitation and assistance robotics. The study also shows the need to stimulate similar initiatives in other sectors of medical robotics (robotic surgery, care and socially assistive robots, rehabilitation systems, training for health and care workers) involving insiders.


Author(s):  
Qutaiba I. Ali ◽  
Firas S. Alsharbaty

Abstract: Power grid is one of the most important manifestations of the modern civilization and the engine of it where it is described as a digestive system of the civil life. It is a structure has three main functions: generation, transmission lines, distribution. This concept was appropriate for a century. However, the beginning of the twenty-first century brought dramatic changes on different domains: media, human growth, economic, environmental, political, and technical etc. Smart grid is a sophisticated structure including cyber and physical bodies hence it reinforces the sustainability, the energy management, the capability of integration with microgrids, and exploiting the renewable energy resources. The quantum leap of smart grid is related to the advanced communication networks that deal with the cyber part. Moreover, the communication networks of smart grid offer attractive capabilities such as monitoring, control, and protection at the level of real time. The wireless communication techniques in integration frame are promised solution to compensate the requirements of smart grid designing such as wireless local area networks, worldwide interoperability for microwave access, long term evolution, and narrowband- internet of things. These technologies could provide high capacity, flexibility, low-cost maintenance for smart grid. However, the multi-interfaces in smart grid may exploit by persons or agencies to implement different types of cyber-attacks may lead to dangerous damage. This research paper reviews the up-to-date researches in the field of smart grid to handle the new trends and topics in one frame in order to offer integration vision in this vital section. It concentrates on the section of communication networks the mainstay of smart grid. This paper discusses the challenging and requirements of adopting the wireless communication technologies and delves deeply into literature review to devise and suggest solutions to compensate the impairments efficiently. Moreover, it explores the cyber security that representing the real defiant to implement the concept of smart grid safely.


2022 ◽  
Vol 2 (14) ◽  
pp. 3-16
Author(s):  
Vu Thi Huong Giang ◽  
Nguyen Manh Tuan

Abstract—The rapid development of web-based systems in the digital transformation era has led to a dramatic increase in the number and the severity of cyber-attacks. Current attack prevention solutions such as system monitoring, security testing and assessment are installed after the system has been deployed, thus requiring more cost and manpower. In that context, the need to assess cyber security risks before the deployment of web-based systems becomes increasingly urgent. This paper introduces a cyber security risk assessment mechanism for web-based systems before deployment. We use the Bayesian network to analyze and quantify the cyber security risks posed by threats to the deployment components of a website. First, the deployment components of potential website deployment scenarios are considered assets, so that their properties are mapped to specific vulnerabilities or threats. Next, the vulnerabilities or threats of each deployment component will be assessed according to the considered risk criteria in specific steps of a deployment process. The risk assessment results for deployment components are aggregated into the risk assessment results for their composed deployment scenario. Based on these results, administrators can compare and choose the least risky deployment scenario. Tóm tắt—Sự phát triển mạnh mẽ của các hệ thống trên nền tảng web trong công cuộc chuyển đổi số kéo theo sự gia tăng nhanh chóng về số lượng và mức độ nguy hiểm của các cuộc tấn công mạng. Các giải pháp phòng chống tấn công hiện nay như theo dõi hoạt động hệ thống, kiểm tra và đánh giá an toàn thông tin mạng được thực hiện khi hệ thống đã được triển khai, do đó đòi hỏi chi phí và nhân lực thực hiện lớn. Trong bối cảnh đó, nhu cầu đánh giá rủi ro an toàn thông tin mạng cho các hệ thống website trước khi triển khai thực tế trở nên cấp thiết. Bài báo này giới thiệu một cơ chế đánh giá rủi ro an toàn thông tin mạng cho các hệ thống website trước khi triển khai thực tế. Chúng tôi sử dụng mạng Bayes để phân tích và định lượng rủi ro về an toàn thông tin do các nguồn đe dọa khác nhau gây ra trên các thành phần triển khai của một website. Đầu tiên, các thành phần triển khai của các kịch bản triển khai website tiềm năng được mô hình hoá dưới dạng các tài sản, sao cho các thuộc tính của chúng đều được ánh xạ với các điểm yếu hoặc nguy cơ cụ thể. Tiếp đó, các điểm yếu, nguy cơ của từng thành phần triển khai sẽ được đánh giá theo các tiêu chí rủi ro đang xét tại mỗi thời điểm cụ thể trong quy trình triển khai. Kết quả đánh giá của các thành phần triển khai được tập hợp lại thành kết quả đánh giá hệ thống trong một kịch bản cụ thể. Căn cứ vào kết quả đánh giá rủi ro, người quản trị có thể so sánh các kịch bản triển khai tiềm năng với nhau để lựa chọn kịch bản triển khai ít rủi ro nhất.


2022 ◽  
Vol 9 ◽  
Author(s):  
M. Akshay Kumaar ◽  
Duraimurugan Samiayya ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang ◽  
...  

The unbounded increase in network traffic and user data has made it difficult for network intrusion detection systems to be abreast and perform well. Intrusion Systems are crucial in e-healthcare since the patients' medical records should be kept highly secure, confidential, and accurate. Any change in the actual patient data can lead to errors in the diagnosis and treatment. Most of the existing artificial intelligence-based systems are trained on outdated intrusion detection repositories, which can produce more false positives and require retraining the algorithm from scratch to support new attacks. These processes also make it challenging to secure patient records in medical systems as the intrusion detection mechanisms can become frequently obsolete. This paper proposes a hybrid framework using Deep Learning named “ImmuneNet” to recognize the latest intrusion attacks and defend healthcare data. The proposed framework uses multiple feature engineering processes, oversampling methods to improve class balance, and hyper-parameter optimization techniques to achieve high accuracy and performance. The architecture contains <1 million parameters, making it lightweight, fast, and IoT-friendly, suitable for deploying the IDS on medical devices and healthcare systems. The performance of ImmuneNet was benchmarked against several other machine learning algorithms on the Canadian Institute for Cybersecurity's Intrusion Detection System 2017, 2018, and Bell DNS 2021 datasets which contain extensive real-time and latest cyber attack data. Out of all the experiments, ImmuneNet performed the best on the CIC Bell DNS 2021 dataset with about 99.19% accuracy, 99.22% precision, 99.19% recall, and 99.2% ROC-AUC scores, which are comparatively better and up-to-date than other existing approaches in classifying between requests that are normal, intrusion, and other cyber attacks.


Sign in / Sign up

Export Citation Format

Share Document