Due date assignment in single machine with stochastic processing times

2013 ◽  
Vol 51 (8) ◽  
pp. 2352-2362 ◽  
Author(s):  
Ali Elyasi ◽  
Nasser Salmasi
2014 ◽  
Vol 624 ◽  
pp. 675-680
Author(s):  
Yu Fang Zhao

We studied single machine scheduling problems in which the jobs need to be delivered to customers after processing. It is assumed that the delivery times are proportional to the length of the already processed jobs, and a job's processing time depended on its position in a sequence. The objective functions include total earliness, the weighted number of tardy jobs and the cost of due date assignment. We analyzed these problems with two different due date assignment methods and conclude that the problems are polynomial time solvable.


1995 ◽  
Vol 27 (03) ◽  
pp. 821-839 ◽  
Author(s):  
Gideon Weiss

We consider scheduling a batch of jobs with stochastic processing times on single or parallel machines, with the objective of minimizing the expected holding costs. Preemption of jobs is allowed, and the holding costs of preempted jobs may depend on the stage of completion. We provide a new proof of the optimality of a Gittins priority rule for the single machine and use the same proof to show that the Gittins priority rule is nearly optimal for parallel machines.


1995 ◽  
Vol 27 (3) ◽  
pp. 821-839 ◽  
Author(s):  
Gideon Weiss

We consider scheduling a batch of jobs with stochastic processing times on single or parallel machines, with the objective of minimizing the expected holding costs. Preemption of jobs is allowed, and the holding costs of preempted jobs may depend on the stage of completion. We provide a new proof of the optimality of a Gittins priority rule for the single machine and use the same proof to show that the Gittins priority rule is nearly optimal for parallel machines.


2014 ◽  
Vol 1006-1007 ◽  
pp. 498-503 ◽  
Author(s):  
Yu Fang Zhao

This paper considers single machine scheduling and due date assignment problems in which the jobs need to be delivered to customers after processing. It is assumed that the delivery times are proportional to the length of the already processed jobs, and a job's processing time depends on its position in a sequence. The objective functions include total earliness, the weighted number of tardy jobs and the cost of due date assignment. We analyze the problems with two different due date assignment methods and conclude that the problems are polynomial time solvable. We provide a dynamic programming algorithm with O(n3) times for the problems.


Sign in / Sign up

Export Citation Format

Share Document