New stability criteria of linear singular systems with time-varying delay

2013 ◽  
Vol 45 (9) ◽  
pp. 1927-1935 ◽  
Author(s):  
Shen Cong
2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Jianmin Jiao

This paper is concerned with stability analysis for singular systems with interval time-varying delay. By constructing a novel Lyapunov functional combined with reciprocally convex approach and linear matrix inequality (LMI) technique, improved delay-dependent stability criteria for the considered systems to be regular, impulse free, and stable are established. The developed results have advantages over some previous ones as they involve fewer decision variables yet less conservatism. Numerical examples are provided to demonstrate the effectiveness of the proposed stability results.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Pin-Lin Liu

This paper deals with the problem of stability analysis for singular systems with time-varying delay. By developing a delay decomposition approach, information of the delayed plant states can be taken into full consideration, and new delay-dependent sufficient stability criteria are obtained in terms of linear matrix inequalities (LMIs), which can be easily solved by various optimization algorithms. The merits of the proposed results lie in their less conservatism which is realized by choosing different Lyapunov matrices in the decomposed intervals and taking the information of the delayed plant states into full consideration. It is proved that the newly proposed criteria may introduce less conservatism than some existing ones. Meanwhile, the computational complexity of the presented stability criteria is reduced greatly since fewer decision variables are involved. Numerical examples are included to show that the proposed method is effective and can provide less conservative results.


Sign in / Sign up

Export Citation Format

Share Document