Comparison of the completely renormalized equation-of-motion coupled-cluster and Quantum Monte Carlo results for the low-lying electronic states of methylene

2010 ◽  
Vol 108 (19-20) ◽  
pp. 2633-2646 ◽  
Author(s):  
Jeffrey R. Gour ◽  
Piotr Piecuch ◽  
Marta Włoch
2020 ◽  
Author(s):  
James Gayvert ◽  
Ksenia Bravaya

The complex absorbing potential (CAP) approach offers a practical tool for characterization of energies and lifetimes of metastable electronic states, such as temporary anions and core ionized states. Here, we present an implementation of the smooth Voronoi CAP combined with equation-of-motion coupled cluster with single and double substitutions method for metastable states. The performance of the smooth Voronoi and a standard box CAPs is compared for different classes of systems: resonances in isolated molecules and in molecular clusters. The results of the benchmark calculations indicate that the choice of the CAP shape should be guided by the character of the metastable states. While Voronoi CAPs yield stable results in the case of a resonance localized on one molecule, their performance in the cases of states delocalized over two or more molecular species can deteriorate due to the CAP leaking into the vacuum region between the moieties. <br>


2020 ◽  
Author(s):  
James Gayvert ◽  
Ksenia Bravaya

The complex absorbing potential (CAP) approach offers a practical tool for characterization of energies and lifetimes of metastable electronic states, such as temporary anions and core ionized states. Here, we present an implementation of the smooth Voronoi CAP combined with equation-of-motion coupled cluster with single and double substitutions method for metastable states. The performance of the smooth Voronoi and a standard box CAPs is compared for different classes of systems: resonances in isolated molecules and in molecular clusters. The results of the benchmark calculations indicate that the choice of the CAP shape should be guided by the character of the metastable states. While Voronoi CAPs yield stable results in the case of a resonance localized on one molecule, their performance in the cases of states delocalized over two or more molecular species can deteriorate due to the CAP leaking into the vacuum region between the moieties. <br>


Sign in / Sign up

Export Citation Format

Share Document