Spectral shift function of the schrödinger operator in the large coupling constant limit

2000 ◽  
Vol 25 (3-4) ◽  
pp. 703-736 ◽  
Author(s):  
Alexander Pushnitski
2007 ◽  
Vol 19 (10) ◽  
pp. 1071-1115 ◽  
Author(s):  
ABDALLAH KHOCHMAN

We consider the selfadjoint operator H = H0+ V, where H0is the free semi-classical Dirac operator on ℝ3. We suppose that the smooth matrix-valued potential V = O(〈x〉-δ), δ > 0, has an analytic continuation in a complex sector outside a compact. We define the resonances as the eigenvalues of the non-selfadjoint operator obtained from the Dirac operator H by complex distortions of ℝ3. We establish an upper bound O(h-3) for the number of resonances in any compact domain. For δ > 3, a representation of the derivative of the spectral shift function ξ(λ,h) related to the semi-classical resonances of H and a local trace formula are obtained. In particular, if V is an electro-magnetic potential, we deduce a Weyl-type asymptotics of the spectral shift function. As a by-product, we obtain an upper bound O(h-2) for the number of resonances close to non-critical energy levels in domains of width h and a Breit–Wigner approximation formula for the derivative of the spectral shift function.


Sign in / Sign up

Export Citation Format

Share Document