Visual Recognition and Visually Guided Action After Early Bilateral Lesion of Occipital Cortex: A Behavioral Study of a 4.6-year-old Girl

Neurocase ◽  
2006 ◽  
Vol 12 (5) ◽  
pp. 263-279 ◽  
Author(s):  
Ileana Amicuzi ◽  
Massimo Stortini ◽  
Maurizio Petrarca ◽  
Paola Di Giulio ◽  
Giuseppe Di Rosa ◽  
...  
2005 ◽  
Vol 43 (2) ◽  
pp. 216-226 ◽  
Author(s):  
Jonathan S. Cant ◽  
David A. Westwood ◽  
Kenneth F. Valyear ◽  
Melvyn A. Goodale

1997 ◽  
Vol 8 (3) ◽  
pp. 224-230 ◽  
Author(s):  
Rick O. Gilmore ◽  
Mark H. Johnson

The extent to which infants combine visual (i e, retinal position) and nonvisual (eye or head position) spatial information in planning saccades relates to the issue of what spatial frame or frames of reference influence early visually guided action We explored this question by testing infants from 4 to 6 months of age on the double-step saccade paradigm, which has shown that adults combine visual and eye position information into an egocentric (head- or trunk-centered) representation of saccade target locations In contrast, our results imply that infants depend on a simple retinocentric representation at age 4 months, but by 6 months use egocentric representations more often to control saccade planning Shifts in the representation of visual space for this simple sensorimotor behavior may index maturation in cortical circuitry devoted to visual spatial processing in general


1994 ◽  
Vol 17 (2) ◽  
pp. 213-214 ◽  
Author(s):  
A. David Milner ◽  
David P. Carey ◽  
Monika Harvey

2019 ◽  
Vol 31 (9) ◽  
pp. 1354-1367
Author(s):  
Yael Holzinger ◽  
Shimon Ullman ◽  
Daniel Harari ◽  
Marlene Behrmann ◽  
Galia Avidan

Visual object recognition is performed effortlessly by humans notwithstanding the fact that it requires a series of complex computations, which are, as yet, not well understood. Here, we tested a novel account of the representations used for visual recognition and their neural correlates using fMRI. The rationale is based on previous research showing that a set of representations, termed “minimal recognizable configurations” (MIRCs), which are computationally derived and have unique psychophysical characteristics, serve as the building blocks of object recognition. We contrasted the BOLD responses elicited by MIRC images, derived from different categories (faces, objects, and places), sub-MIRCs, which are visually similar to MIRCs, but, instead, result in poor recognition and scrambled, unrecognizable images. Stimuli were presented in blocks, and participants indicated yes/no recognition for each image. We confirmed that MIRCs elicited higher recognition performance compared to sub-MIRCs for all three categories. Whereas fMRI activation in early visual cortex for both MIRCs and sub-MIRCs of each category did not differ from that elicited by scrambled images, high-level visual regions exhibited overall greater activation for MIRCs compared to sub-MIRCs or scrambled images. Moreover, MIRCs and sub-MIRCs from each category elicited enhanced activation in corresponding category-selective regions including fusiform face area and occipital face area (faces), lateral occipital cortex (objects), and parahippocampal place area and transverse occipital sulcus (places). These findings reveal the psychological and neural relevance of MIRCs and enable us to make progress in developing a more complete account of object recognition.


2010 ◽  
Vol 40 (3) ◽  
pp. 183-187 ◽  
Author(s):  
Jason Locklin ◽  
Lindsay Bunn ◽  
Eric Roy ◽  
James Danckert

Sign in / Sign up

Export Citation Format

Share Document