real world
Recently Published Documents


TOTAL DOCUMENTS

46525
(FIVE YEARS 29252)

H-INDEX

161
(FIVE YEARS 60)

2022 ◽  
Vol 13 (1) ◽  
pp. 1-18
Author(s):  
Xin Bi ◽  
Chao Zhang ◽  
Fangtong Wang ◽  
Zhixun Liu ◽  
Xiangguo Zhao ◽  
...  

As a variant task of time-series segmentation, trajectory segmentation is a key task in the applications of transportation pattern recognition and traffic analysis. However, segmenting trajectory is faced with challenges of implicit patterns and sparse results. Although deep neural networks have tremendous advantages in terms of high-level feature learning performance, deploying as a blackbox seriously limits the real-world applications. Providing explainable segmentations has significance for result evaluation and decision making. Thus, in this article, we address trajectory segmentation by proposing a Bayesian Encoder-Decoder Network (BED-Net) to provide accurate detection with explainability and references for the following active-learning procedures. BED-Net consists of a segmentation module based on Monte Carlo dropout and an explanation module based on uncertainty learning that provides results evaluation and visualization. Experimental results on both benchmark and real-world datasets indicate that BED-Net outperforms the rival methods and offers excellent explainability in the applications of trajectory segmentation.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-20
Author(s):  
Zhe Jiang ◽  
Wenchong He ◽  
Marcus Stephen Kirby ◽  
Arpan Man Sainju ◽  
Shaowen Wang ◽  
...  

In recent years, deep learning has achieved tremendous success in image segmentation for computer vision applications. The performance of these models heavily relies on the availability of large-scale high-quality training labels (e.g., PASCAL VOC 2012). Unfortunately, such large-scale high-quality training data are often unavailable in many real-world spatial or spatiotemporal problems in earth science and remote sensing (e.g., mapping the nationwide river streams for water resource management). Although extensive efforts have been made to reduce the reliance on labeled data (e.g., semi-supervised or unsupervised learning, few-shot learning), the complex nature of geographic data such as spatial heterogeneity still requires sufficient training labels when transferring a pre-trained model from one region to another. On the other hand, it is often much easier to collect lower-quality training labels with imperfect alignment with earth imagery pixels (e.g., through interpreting coarse imagery by non-expert volunteers). However, directly training a deep neural network on imperfect labels with geometric annotation errors could significantly impact model performance. Existing research that overcomes imperfect training labels either focuses on errors in label class semantics or characterizes label location errors at the pixel level. These methods do not fully incorporate the geometric properties of label location errors in the vector representation. To fill the gap, this article proposes a weakly supervised learning framework to simultaneously update deep learning model parameters and infer hidden true vector label locations. Specifically, we model label location errors in the vector representation to partially reserve geometric properties (e.g., spatial contiguity within line segments). Evaluations on real-world datasets in the National Hydrography Dataset (NHD) refinement application illustrate that the proposed framework outperforms baseline methods in classification accuracy.


2022 ◽  
Vol 14 (1) ◽  
pp. 1-12
Author(s):  
Sandra Geisler ◽  
Maria-Esther Vidal ◽  
Cinzia Cappiello ◽  
Bernadette Farias Lóscio ◽  
Avigdor Gal ◽  
...  

A data ecosystem (DE) offers a keystone-player or alliance-driven infrastructure that enables the interaction of different stakeholders and the resolution of interoperability issues among shared data. However, despite years of research in data governance and management, trustability is still affected by the absence of transparent and traceable data-driven pipelines. In this work, we focus on requirements and challenges that DEs face when ensuring data transparency. Requirements are derived from the data and organizational management, as well as from broader legal and ethical considerations. We propose a novel knowledge-driven DE architecture, providing the pillars for satisfying the analyzed requirements. We illustrate the potential of our proposal in a real-world scenario. Last, we discuss and rate the potential of the proposed architecture in the fulfillmentof these requirements.


2022 ◽  
Vol 16 (2) ◽  
pp. 1-34
Author(s):  
Arpita Biswas ◽  
Gourab K. Patro ◽  
Niloy Ganguly ◽  
Krishna P. Gummadi ◽  
Abhijnan Chakraborty

Many online platforms today (such as Amazon, Netflix, Spotify, LinkedIn, and AirBnB) can be thought of as two-sided markets with producers and customers of goods and services. Traditionally, recommendation services in these platforms have focused on maximizing customer satisfaction by tailoring the results according to the personalized preferences of individual customers. However, our investigation reinforces the fact that such customer-centric design of these services may lead to unfair distribution of exposure to the producers, which may adversely impact their well-being. However, a pure producer-centric design might become unfair to the customers. As more and more people are depending on such platforms to earn a living, it is important to ensure fairness to both producers and customers. In this work, by mapping a fair personalized recommendation problem to a constrained version of the problem of fairly allocating indivisible goods, we propose to provide fairness guarantees for both sides. Formally, our proposed FairRec algorithm guarantees Maxi-Min Share of exposure for the producers, and Envy-Free up to One Item fairness for the customers. Extensive evaluations over multiple real-world datasets show the effectiveness of FairRec in ensuring two-sided fairness while incurring a marginal loss in overall recommendation quality. Finally, we present a modification of FairRec (named as FairRecPlus ) that at the cost of additional computation time, improves the recommendation performance for the customers, while maintaining the same fairness guarantees.


2022 ◽  
Vol 272 ◽  
pp. 175-183
Author(s):  
Anh Thu Tran ◽  
Elsie Rizk ◽  
Eric M. Haas ◽  
George Naufal ◽  
Lixian Zhong ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
pp. 1-22
Author(s):  
Hongting Niu ◽  
Hengshu Zhu ◽  
Ying Sun ◽  
Xinjiang Lu ◽  
Jing Sun ◽  
...  

Recent years have witnessed the rapid development of car-hailing services, which provide a convenient approach for connecting passengers and local drivers using their personal vehicles. At the same time, the concern on passenger safety has gradually emerged and attracted more and more attention. While car-hailing service providers have made considerable efforts on developing real-time trajectory tracking systems and alarm mechanisms, most of them only focus on providing rescue-supporting information rather than preventing potential crimes. Recently, the newly available large-scale car-hailing order data have provided an unparalleled chance for researchers to explore the risky travel area and behavior of car-hailing services, which can be used for building an intelligent crime early warning system. To this end, in this article, we propose a Risky Area and Risky Behavior Evaluation System (RARBEs) based on the real-world car-hailing order data. In RARBEs, we first mine massive multi-source urban data and train an effective area risk prediction model, which estimates area risk at the urban block level. Then, we propose a transverse and longitudinal double detection method, which estimates behavior risk based on two aspects, including fraud trajectory recognition and fraud patterns mining. In particular, we creatively propose a bipartite graph-based algorithm to model the implicit relationship between areas and behaviors, which collaboratively adjusts area risk and behavior risk estimation based on random walk regularization. Finally, extensive experiments on multi-source real-world urban data clearly validate the effectiveness and efficiency of our system.


2022 ◽  
Vol 27 (3) ◽  
pp. 1-24
Author(s):  
Lang Feng ◽  
Jiayi Huang ◽  
Jeff Huang ◽  
Jiang Hu

Data-Flow Integrity (DFI) is a well-known approach to effectively detecting a wide range of software attacks. However, its real-world application has been quite limited so far because of the prohibitive performance overhead it incurs. Moreover, the overhead is enormously difficult to overcome without substantially lowering the DFI criterion. In this work, an analysis is performed to understand the main factors contributing to the overhead. Accordingly, a hardware-assisted parallel approach is proposed to tackle the overhead challenge. Simulations on SPEC CPU 2006 benchmark show that the proposed approach can completely enforce the DFI defined in the original seminal work while reducing performance overhead by 4×, on average.


2022 ◽  
Vol 11 (1) ◽  
pp. 1-24
Author(s):  
Christopher D. Wallbridge ◽  
Alex Smith ◽  
Manuel Giuliani ◽  
Chris Melhuish ◽  
Tony Belpaeme ◽  
...  

We explore the effectiveness of a dynamically processed incremental referring description system using under-specified ambiguous descriptions that are then built upon using linguistic repair statements, which we refer to as a dynamic system. We build a dynamically processed incremental referring description generation system that is able to provide contextual navigational statements to describe an object in a potential real-world situation of nuclear waste sorting and maintenance. In a study of 31 participants, we test the dynamic system in a case where a user is remote operating a robot to sort nuclear waste, with the robot assisting them in identifying the correct barrels to be removed. We compare these against a static non-ambiguous description given in the same scenario. As well as looking at efficiency with time and distance measurements, we also look at user preference. Results show that our dynamic system was a much more efficient method—taking only 62% of the time on average—for finding the correct barrel. Participants also favoured our dynamic system.


2022 ◽  
Vol 40 (3) ◽  
pp. 1-21
Author(s):  
Lili Wang ◽  
Chenghan Huang ◽  
Ying Lu ◽  
Weicheng Ma ◽  
Ruibo Liu ◽  
...  

Complex user behavior, especially in settings such as social media, can be organized as time-evolving networks. Through network embedding, we can extract general-purpose vector representations of these dynamic networks which allow us to analyze them without extensive feature engineering. Prior work has shown how to generate network embeddings while preserving the structural role proximity of nodes. These methods, however, cannot capture the temporal evolution of the structural identity of the nodes in dynamic networks. Other works, on the other hand, have focused on learning microscopic dynamic embeddings. Though these methods can learn node representations over dynamic networks, these representations capture the local context of nodes and do not learn the structural roles of nodes. In this article, we propose a novel method for learning structural node embeddings in discrete-time dynamic networks. Our method, called HR2vec , tracks historical topology information in dynamic networks to learn dynamic structural role embeddings. Through experiments on synthetic and real-world temporal datasets, we show that our method outperforms other well-known methods in tasks where structural equivalence and historical information both play important roles. HR2vec can be used to model dynamic user behavior in any networked setting where users can be represented as nodes. Additionally, we propose a novel method (called network fingerprinting) that uses HR2vec embeddings for modeling whole (or partial) time-evolving networks. We showcase our network fingerprinting method on synthetic and real-world networks. Specifically, we demonstrate how our method can be used for detecting foreign-backed information operations on Twitter.


Sign in / Sign up

Export Citation Format

Share Document