scholarly journals Estimation of statistical characteristic of aeronautical materials and structures with the empirical distribution function under random censoring

2019 ◽  
Vol 1158 ◽  
pp. 022003
Author(s):  
L V Agamirov ◽  
V L Agamirov ◽  
V A Vestyak
1975 ◽  
Vol 12 (S1) ◽  
pp. 67-87 ◽  
Author(s):  
Paul Meier

The product-limit estimator for a distribution function, appropriate to observations which are variably censored, was introduced by Kaplan and Meier in 1958; it has provided a basis for study of more complex problems by Cox and by others. Its properties in the case of random censoring have been studied by Efron and later writers. The basic properties of the product-limit estimator are here shown to be closely parallel to the properties of the empirical distribution function in the general case of variably and arbitrarily censored observations.


2021 ◽  
Vol 2068 (1) ◽  
pp. 012003
Author(s):  
Ayari Samia ◽  
Mohamed Boutahar

Abstract The purpose of this paper is estimating the dependence function of multivariate extreme values copulas. Different nonparametric estimators are developed in the literature assuming that marginal distributions are known. However, this assumption is unrealistic in practice. To overcome the drawbacks of these estimators, we substituted the extreme value marginal distribution by the empirical distribution function. Monte Carlo experiments are carried out to compare the performance of the Pickands, Deheuvels, Hall-Tajvidi, Zhang and Gudendorf-Segers estimators. Empirical results showed that the empirical distribution function improved the estimators’ performance for different sample sizes.


Author(s):  
M. D. Edge

Nonparametric and semiparametric statistical methods assume models whose properties cannot be described by a finite number of parameters. For example, a linear regression model that assumes that the disturbances are independent draws from an unknown distribution is semiparametric—it includes the intercept and slope as regression parameters but has a nonparametric part, the unknown distribution of the disturbances. Nonparametric and semiparametric methods focus on the empirical distribution function, which, assuming that the data are really independent observations from the same distribution, is a consistent estimator of the true cumulative distribution function. In this chapter, with plug-in estimation and the method of moments, functionals or parameters are estimated by treating the empirical distribution function as if it were the true cumulative distribution function. Such estimators are consistent. To understand the variation of point estimates, bootstrapping is used to resample from the empirical distribution function. For hypothesis testing, one can either use a bootstrap-based confidence interval or conduct a permutation test, which can be designed to test null hypotheses of independence or exchangeability. Resampling methods—including bootstrapping and permutation testing—are flexible and easy to implement with a little programming expertise.


Sign in / Sign up

Export Citation Format

Share Document