scholarly journals Random matrices in 2D, Laplacian growth and operator theory

2008 ◽  
Vol 41 (26) ◽  
pp. 263001 ◽  
Author(s):  
Mark Mineev-Weinstein ◽  
Mihai Putinar ◽  
Razvan Teodorescu
Author(s):  
Patrik L. Ferrari ◽  
Herbert Spohn

This article reviews the theory of random matrices with eigenvalues distributed in the complex plane and more general ‘beta ensembles’ (logarithmic gases in 2D). It first considers two ensembles of random matrices with complex eigenvalues: ensemble C of general complex matrices and ensemble N of normal matrices. In particular, it describes the Dyson gas picture for ensembles of matrices with general complex eigenvalues distributed on the plane. It then presents some general exact relations for correlation functions valid for any values of N and β before analysing the distribution and correlations of the eigenvalues in the large N limit. Using the technique of boundary value problems in two dimensions and elements of the potential theory, the article demonstrates that the finite-time blow-up (a cusp–like singularity) of the Laplacian growth with zero surface tension is a critical point of the normal and complex matrix models.


2013 ◽  
Author(s):  
Grey Ballard ◽  
Aydin Buluc ◽  
James Demmel ◽  
Laura Grigori ◽  
Benjamin Lipshitz ◽  
...  

Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2249-2255
Author(s):  
Huanyin Chen ◽  
Marjan Abdolyousefi

It is well known that for an associative ring R, if ab has g-Drazin inverse then ba has g-Drazin inverse. In this case, (ba)d = b((ab)d)2a. This formula is so-called Cline?s formula for g-Drazin inverse, which plays an elementary role in matrix and operator theory. In this paper, we generalize Cline?s formula to the wider case. In particular, as applications, we obtain new common spectral properties of bounded linear operators.


Sign in / Sign up

Export Citation Format

Share Document