blow up
Recently Published Documents


TOTAL DOCUMENTS

4881
(FIVE YEARS 1143)

H-INDEX

76
(FIVE YEARS 10)

2022 ◽  
Vol 310 ◽  
pp. 138-163
Author(s):  
Veli B. Shakhmurov ◽  
Vural Bayrak ◽  
Rishad Shahmurov

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Imed Bachar ◽  
Entesar Aljarallah

AbstractWe consider the following singular semilinear problem $$ \textstyle\begin{cases} \Delta u(x)+p(x)u^{\gamma }=0,\quad x\in D ~(\text{in the distributional sense}), \\ u>0,\quad \text{in }D, \\ \lim_{ \vert x \vert \rightarrow 0} \vert x \vert ^{n-2}u(x)=0, \\ \lim_{ \vert x \vert \rightarrow \infty }u(x)=0,\end{cases} $$ { Δ u ( x ) + p ( x ) u γ = 0 , x ∈ D ( in the distributional sense ) , u > 0 , in  D , lim | x | → 0 | x | n − 2 u ( x ) = 0 , lim | x | → ∞ u ( x ) = 0 , where $\gamma <1$ γ < 1 , $D=\mathbb{R}^{n}\backslash \{0\}$ D = R n ∖ { 0 } ($n\geq 3$ n ≥ 3 ) and p is a positive continuous function in D, which may be singular at $x=0$ x = 0 . Under sufficient conditions for the weighted function $p(x)$ p ( x ) , we prove the existence of a positive continuous solution on D, which could blow-up at the origin. The global asymptotic behavior of this solution is also obtained.


2022 ◽  
Vol 32 (2) ◽  
Author(s):  
Maximilian Engel ◽  
Christian Kuehn ◽  
Matteo Petrera ◽  
Yuri Suris

AbstractWe study the problem of preservation of maximal canards for time discretized fast–slow systems with canard fold points. In order to ensure such preservation, certain favorable structure-preserving properties of the discretization scheme are required. Conventional schemes do not possess such properties. We perform a detailed analysis for an unconventional discretization scheme due to Kahan. The analysis uses the blow-up method to deal with the loss of normal hyperbolicity at the canard point. We show that the structure-preserving properties of the Kahan discretization for quadratic vector fields imply a similar result as in continuous time, guaranteeing the occurrence of maximal canards between attracting and repelling slow manifolds upon variation of a bifurcation parameter. The proof is based on a Melnikov computation along an invariant separating curve, which organizes the dynamics of the map similarly to the ODE problem.


Sign in / Sign up

Export Citation Format

Share Document