scholarly journals Bilinear equations and q-discrete Painlevé equations satisfied by variables and coefficients in cluster algebras

2015 ◽  
Vol 48 (35) ◽  
pp. 355201 ◽  
Author(s):  
Naoto Okubo
Author(s):  
Giulio Bonelli ◽  
Fabrizio Del Monte ◽  
Alessandro Tanzini

AbstractWe study the discrete flows generated by the symmetry group of the BPS quivers for Calabi–Yau geometries describing five-dimensional superconformal quantum field theories on a circle. These flows naturally describe the BPS particle spectrum of such theories and at the same time generate bilinear equations of q-difference type which, in the rank one case, are q-Painlevé equations. The solutions of these equations are shown to be given by grand canonical topological string partition functions which we identify with $$\tau $$ τ -functions of the cluster algebra associated to the quiver. We exemplify our construction in the case corresponding to five-dimensional SU(2) pure super Yang–Mills and $$N_f=2$$ N f = 2 on a circle.


Author(s):  
Nalini Joshi ◽  
Yang Shi

In this paper, we present a new method of deducing infinite sequences of exact solutions of q -discrete Painlevé equations by using their associated linear problems. The specific equation we consider in this paper is a q -discrete version of the second Painlevé equation ( q -P II ) with affine Weyl group symmetry of type ( A 2 + A 1 ) (1) . We show, for the first time, how to use the q -discrete linear problem associated with q -P II to find an infinite sequence of exact rational solutions and also show how to find their representation as determinants by using the linear problem. The method, while demonstrated for q -P II here, is also applicable to other discrete Painlevé equations.


2020 ◽  
Vol 27 (3) ◽  
pp. 453-477 ◽  
Author(s):  
Huda Alrashdi ◽  
Nalini Joshi ◽  
Dinh Thi Tran

Sign in / Sign up

Export Citation Format

Share Document