scholarly journals Maximal potentials, maximal singular integrals, and the spherical maximal function

2014 ◽  
Vol 142 (11) ◽  
pp. 3965-3974 ◽  
Author(s):  
Piotr Hajłasz ◽  
Zhuomin Liu
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiao Zhang ◽  
Feng Liu

Abstract In this note we study the maximal singular integral operators associated with a homogeneous mapping with rough kernels as well as the corresponding maximal operators. The boundedness and continuity on the Lebesgue spaces, Triebel–Lizorkin spaces, and Besov spaces are established for the above operators with rough kernels in $H^{1}({\mathrm{S}}^{n-1})$ H 1 ( S n − 1 ) , which complement some recent developments related to rough maximal singular integrals.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jianfeng Dong ◽  
Jizheng Huang ◽  
Heping Liu

LetL=-Δ+Vbe a Schrödinger operator onRn,n≥3, whereV≢0is a nonnegative potential belonging to the reverse Hölder classBn/2. The Hardy type spacesHLp, n/(n+δ) <p≤1,for someδ>0, are defined in terms of the maximal function with respect to the semigroup{e-tL}t>0. In this paper, we investigate the bounded properties of some singular integral operators related toL, such asLiγand∇L-1/2, on spacesHLp. We give the molecular characterization ofHLp, which is used to establish theHLp-boundedness of singular integrals.


2009 ◽  
Vol 104 (2) ◽  
pp. 296 ◽  
Author(s):  
Loukas Grafakos ◽  
Liguang Liu ◽  
Dachun Yang

The Fefferman-Stein vector-valued maximal function inequality is proved for spaces of homogeneous type. The approach taken here is based on the theory of vector-valued Calderón-Zygmund singular integral theory in this context, which is appropriately developed.


2018 ◽  
Vol 2020 (19) ◽  
pp. 6120-6134
Author(s):  
Petr Honzík

Abstract We study the rough maximal singular integral $$T^{\#}_\Omega\big(\,f\big)\big(x\big)=\sup_{\varepsilon&gt;0} \left| \int_{\mathbb{R}^{n}\setminus B(0,\varepsilon)}|y|^{-n} \Omega(y/|y|)\,f(x-y) \mathrm{d}y\right|,$$where $\Omega$ is a function in $L^\infty (\mathbb{S}^{n-1})$ with vanishing integral. It is well known that the operator is bounded on $L^p$ for $1&lt;p&lt;\infty ,$ but it is an open question whether it is of the weak type 1-1. We show that $T^{\#}_\Omega$ is bounded from $L(\log \log L)^{2+\varepsilon }$ to $L^{1,\infty }$ locally.


2010 ◽  
Vol 21 (02) ◽  
pp. 157-168 ◽  
Author(s):  
CHUNJIE ZHANG ◽  
JIECHENG CHEN

In this paper, assuming Ω ∈ H1(Sn-1), we prove that the singular integral TΩ and the maximal singular integral [Formula: see text] are all bounded on Triebel–Lizorkin spaces, homogeneous or inhomogeneous.


2014 ◽  
Vol 222 (1) ◽  
pp. 41-49
Author(s):  
Yong Ding ◽  
Shuichi Sato

Sign in / Sign up

Export Citation Format

Share Document