hardy type
Recently Published Documents


TOTAL DOCUMENTS

599
(FIVE YEARS 163)

H-INDEX

17
(FIVE YEARS 4)

2022 ◽  
Vol 32 (3) ◽  
Author(s):  
Dorothee D. Haroske ◽  
Cornelia Schneider ◽  
Kristóf Szarvas

AbstractWe study unboundedness properties of functions belonging to Lebesgue and Lorentz spaces with variable and mixed norms using growth envelopes. Our results extend the ones for the corresponding classical spaces in a natural way. In the case of spaces with mixed norms, it turns out that the unboundedness in the worst direction, i.e., in the direction where $$p_{i}$$ p i is the smallest, is crucial. More precisely, the growth envelope is given by $${\mathfrak {E}}_{{\mathsf {G}}}(L_{\overrightarrow{p}}(\varOmega )) = (t^{-1/\min \{p_{1}, \ldots , p_{d} \}},\min \{p_{1}, \ldots , p_{d} \})$$ E G ( L p → ( Ω ) ) = ( t - 1 / min { p 1 , … , p d } , min { p 1 , … , p d } ) for mixed Lebesgue and $${\mathfrak {E}}_{{\mathsf {G}}}(L_{\overrightarrow{p},q}(\varOmega )) = (t^{-1/\min \{p_{1}, \ldots , p_{d} \}},q)$$ E G ( L p → , q ( Ω ) ) = ( t - 1 / min { p 1 , … , p d } , q ) for mixed Lorentz spaces, respectively. For the variable Lebesgue spaces, we obtain $${\mathfrak {E}}_{{\mathsf {G}}}(L_{p(\cdot )}(\varOmega )) = (t^{-1/p_{-}},p_{-})$$ E G ( L p ( · ) ( Ω ) ) = ( t - 1 / p - , p - ) , where $$p_{-}$$ p - is the essential infimum of $$p(\cdot )$$ p ( · ) , subject to some further assumptions. Similarly, for the variable Lorentz space, it holds$${\mathfrak {E}}_{{\mathsf {G}}}(L_{p(\cdot ),q}(\varOmega )) = (t^{-1/p_{-}},q)$$ E G ( L p ( · ) , q ( Ω ) ) = ( t - 1 / p - , q ) . The growth envelope is used for Hardy-type inequalities and limiting embeddings. In particular, as a by-product, we determine the smallest classical Lebesgue (Lorentz) space which contains a fixed mixed or variable Lebesgue (Lorentz) space, respectively.


2022 ◽  
Vol 4 (3) ◽  
pp. 1-16
Author(s):  
Luz Roncal ◽  
◽  
◽  

<abstract><p>We prove Hardy type inequalities for the fractional relativistic operator by using two different techniques. The first approach goes through trace Hardy inequalities. In order to get the latter, we study the solutions of the associated extension problem. The second develops a non-local version of the ground state representation in the spirit of Frank, Lieb, and Seiringer.</p></abstract>


2021 ◽  
Vol 12 (4) ◽  
pp. 1-15
Author(s):  
GEORGE A. ANASTASSIOU

We introduce here the mixed generalized multivariate Prabhakar type left and right fractional integrals and study their basic properties, such as preservation of continuity and their boundedness as positive linear operators. Then we produce an interesting variety of related multivariate left and right fractional Hardy type inequalities under convexity. We introduce also other related multivariate fractional integrals


2021 ◽  
Vol 104 (4) ◽  
pp. 103-109
Author(s):  
A.A. Kalybay ◽  
◽  
A.O. Baiarystanov ◽  

The oscillatory theory of fourth order differential equations has not yet been developed well enough. The results are known only for the case when the coefficients of differential equations are power functions. This fact can be explained by the absence of simple effective methods for studying such higher order equations. In this paper, the authors investigate the oscillatory properties of a class of fourth order differential equations by the variational method. The presented variational method allows to consider any arbitrary functions as coefficients, and our main results depend on their boundary behavior in neighborhoods of zero and infinity. Moreover, this variational method is based on the validity of a certain weighted differential inequality of Hardy type, which is of independent interest. The authors of the article also find two-sided estimates of the least constant for this inequality, which are especially important for their applications to the main results on the oscillatory properties of these differential equations.


Author(s):  
Idan Versano

We construct new optimal $L^{p}$ Hardy-type inequalities for elliptic Schrödinger-type operators with a potential term.


Author(s):  
А. М. Abylayeva ◽  
◽  
B. N. Seilbekov ◽  
A. O. Baiarystanov ◽  
◽  
...  

The paper establishes a characterization of the compactness for fractional operators of a general class, including the Riemann-Liouville, Hadamard and Erdelyi-Kober operators. The paper considers an integral fractional integration operator of Hardy type with nonnegative kernels and a variable limit of integration (a function as the upper limit of integration) and under certain conditions on the kernel, a criterion of the compactness in weighted Lebesgue spaces is obtained for this operator, when the parameters of the spaces satisfy the conditions Moreover, more general results are obtained for the weighted differential inequality of Hardy type on the set of locally absolutely continuous functions that vanish and infinity at the ends of the interval, covering the previously known results, and more precise estimates for the best constant are given. The localization method, Schauder’s theorem, the Kantorovich test, and the theorem on the uniform limit of compact operators were used in the proof of the main theorem. The obtained results of the study the compactness of fractional integration operators can be used in the estimation of solutions of differential equations that model various processes in mathematics. In particular, these results yield new results in the theory of Hardy-type inequalities.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hongchao Jia ◽  
Jin Tao ◽  
Dachun Yang ◽  
Wen Yuan ◽  
Yangyang Zhang
Keyword(s):  

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ahmed A. El-Deeb ◽  
Samer D. Makharesh ◽  
Eze R. Nwaeze ◽  
Olaniyi S. Iyiola ◽  
Dumitru Baleanu

AbstractThe main aim of the present article is to introduce some new ∇-conformable dynamic inequalities of Hardy type on time scales. We present and prove several results using chain rule and Fubini’s theorem on time scales. Our results generalize, complement, and extend existing results in the literature. Many special cases of the proposed results, such as new conformable fractional h-sum inequalities, new conformable fractional q-sum inequalities, and new classical conformable fractional integral inequalities, are obtained and analyzed.


2021 ◽  
Vol 24 (6) ◽  
pp. 1643-1669
Author(s):  
Natasha Samko

Abstract We study commutators of weighted fractional Hardy-type operators within the frameworks of local generalized Morrey spaces over quasi-metric measure spaces for a certain class of “radial” weights. Quasi-metric measure spaces may include, in particular, sets of fractional dimentsions. We prove theorems on the boundedness of commutators with CMO coefficients of these operators. Given a domain Morrey space 𝓛 p,φ (X) for the fractional Hardy operators or their commutators, we pay a special attention to the study of the range of the exponent q of the target space 𝓛 q,ψ (X). In particular, in the case of classical Morrey spaces, we provide the upper bound of this range which is greater than the known Adams exponent.


Sign in / Sign up

Export Citation Format

Share Document