Temperature-Sensitive Mutants of Respiratory Syncytial Virus: In-Vivo Studies in Hamsters

1970 ◽  
Vol 122 (6) ◽  
pp. 501-512 ◽  
Author(s):  
P. F. Wright ◽  
W. G. Woodend ◽  
R. M. Chanock
2021 ◽  
Author(s):  
Li-Nan Wang ◽  
Xiang-Lei Peng ◽  
Min Xu ◽  
Yuan-Bo Zheng ◽  
Yue-Ying Jiao ◽  
...  

AbstractHuman respiratory syncytial virus (RSV) infection is the leading cause of lower respiratory tract illness (LRTI), and no vaccine against LRTI has proven to be safe and effective in infants. Our study assessed attenuated recombinant RSVs as vaccine candidates to prevent RSV infection in mice. The constructed recombinant plasmids harbored (5′ to 3′) a T7 promoter, hammerhead ribozyme, RSV Long strain antigenomic cDNA with cold-passaged (cp) mutations or cp combined with temperature-sensitive attenuated mutations from the A2 strain (A2cpts) or further combined with SH gene deletion (A2cptsΔSH), HDV ribozyme (δ), and a T7 terminator. These vectors were subsequently co-transfected with four helper plasmids encoding N, P, L, and M2-1 viral proteins into BHK/T7-9 cells, and the recovered viruses were then passaged in Vero cells. The rescued recombinant RSVs (rRSVs) were named rRSV-Long/A2cp, rRSV-Long/A2cpts, and rRSV-Long/A2cptsΔSH, respectively, and stably passaged in vitro, without reversion to wild type (wt) at sites containing introduced mutations or deletion. Although rRSV-Long/A2cpts and rRSV-Long/A2cptsΔSH displayed  temperature-sensitive (ts) phenotype in vitro and in vivo, all rRSVs were significantly attenuated in vivo. Furthermore, BALB/c mice immunized with rRSVs produced Th1-biased immune response, resisted wtRSV infection, and were free from enhanced respiratory disease. We showed that the combination of ΔSH with attenuation (att) mutations of cpts contributed to improving att phenotype, efficacy, and gene stability of rRSV. By successfully introducing att mutations and SH gene deletion into the RSV Long parent and producing three rRSV strains, we have laid an important foundation for the development of RSV live attenuated vaccines.


1978 ◽  
Vol 3 (2) ◽  
pp. 101-110 ◽  
Author(s):  
Robert B. Belshe ◽  
Linda S. Richardson ◽  
William T. London ◽  
D. Lewis Sly ◽  
Ena Camargo ◽  
...  

1969 ◽  
Vol 3 (4) ◽  
pp. 414-421 ◽  
Author(s):  
Meera A. Gharpure ◽  
Peter F. Wright ◽  
Robert M. Chanock

2015 ◽  
Vol 89 (20) ◽  
pp. 10319-10332 ◽  
Author(s):  
Natalie Mackow ◽  
Emérito Amaro-Carambot ◽  
Bo Liang ◽  
Sonja Surman ◽  
Matthias Lingemann ◽  
...  

ABSTRACTLive attenuated recombinant human parainfluenza virus type 1 (rHPIV1) was investigated as a vector to express the respiratory syncytial virus (RSV) fusion (F) glycoprotein, to provide a bivalent vaccine against RSV and HPIV1. The RSV F gene was engineered to include HPIV1 transcription signals and inserted individually into three gene locations in each of the two attenuated rHPIV1 backbones. Each backbone contained a single previously described attenuating mutation that was stabilized against deattenuation, specifically, a non-temperature-sensitive deletion mutation involving 6 nucleotides in the overlapping P/C open reading frames (ORFs) (CΔ170) or a temperature-sensitive missense mutation in the L ORF (LY942A). The insertion sites in the genome were pre-N (F1), N-P (F2), or P-M (F3) and were identical for both backbones.In vitro, the presence of the F insert reduced the rate of virus replication, but the final titers were the same as the final titer of wild-type (wt) HPIV1. High levels of RSV F expression in cultured cells were observed with rHPIV1-CΔ170-F1, -F2, and -F3 and rHPIV1-LY942A-F1. In hamsters, the rHPIV1-CΔ170-F1, -F2, and -F3 vectors were moderately restricted in the nasal turbinates, highly restricted in lungs, and genetically stablein vivo. Among the CΔ170vectors, the F1 virus was the most immunogenic and protective against wt RSV challenge. The rHPIV1-LY942Avectors were highly restrictedin vivoand were not detectably immunogenic or protective, indicative of overattenuation. The CΔ170-F1 construct appears to be suitably attenuated and immunogenic for further development as a bivalent intranasal pediatric vaccine.IMPORTANCEThere are no vaccines for the pediatric respiratory pathogens RSV and HPIV. We are developing live attenuated RSV and HPIV vaccines for use in virus-naive infants. Live attenuated RSV strains in particular are difficult to develop due to their poor growth and physical instability, but these obstacles could be avoided by the use of a vaccine vector. We describe the development and preclinical evaluation of live attenuated rHPIV1 vectors expressing the RSV F protein. Two different attenuated rHPIV1 backbones were each engineered to express RSV F from three different gene positions. The rHPIV1-CΔ170-F1 vector, bearing an attenuating deletion mutation (CΔ170) in the P/C gene and expressing RSV F from the pre-N position, was attenuated, stable, and immunogenic against the RSV F protein and HPIV1 in the hamster model and provided substantial protection against RSV challenge. This study provides a candidate rHPIV1-RSV-F vaccine virus suitable for continued development as a bivalent vaccine against two major childhood pathogens.


Sign in / Sign up

Export Citation Format

Share Document