gene deletion
Recently Published Documents


TOTAL DOCUMENTS

1951
(FIVE YEARS 399)

H-INDEX

91
(FIVE YEARS 9)

2022 ◽  
Vol 23 (3) ◽  
Author(s):  
Huihui Xu ◽  
Rui Dong ◽  
Qinghe Zeng ◽  
Liang Fang ◽  
Qinwen Ge ◽  
...  

Author(s):  
Hongrui Zhang ◽  
Weiwei Chen ◽  
Xinyi Wang ◽  
Yongquan Li ◽  
Zhenhong Zhu

The purpose of this study is to explore the function of MarR-family regulator slnO. In addition, the high-yield strain of salinomycin was constructed by using combined regulation strategies. Firstly the slnO gene over-expression strain (GO) was constructed in Streptomyces albus. Compared to wild type (WT) strain,salinomycin production in GO strain was increased about 28%. Electrophoretic mobility gel shift assays (EMSAs) confirmed that SlnO protein can bind specifically to the intergenic region of slnN-slnO, slnQ-slnA1 and slnF-slnT. qRT-PCR experiments also showed that slnA1, slnF, and slnT1 were significantly up-regulated, while the expression level of the slnN gene was down-regulated in GO strain. Secondly, slnN gene deletion strain (slnNDM) was used as the starting strain, and the pathway specific gene slnR in salinomycin gene cluster was over expressed in slnNDM. The new strain was named ZJUS01. The yield of salinomycin in ZJUS01 strain was 25% and 56% higher than that in slnNDM strain and WT strain. Above results indicate that the slnO gene has a positive regulation effect on the biosynthesis of salinomycin. Meanwhile, the yield of salinomycin could be greatly increased by manipulating multiple transcriptional regulations.


2022 ◽  
Author(s):  
Priyanka Fernandes ◽  
Manon Loubens ◽  
Remi Le Borgne ◽  
Carine Marinach ◽  
Beatrice Ardin ◽  
...  

Plasmodium sporozoites that are transmitted by blood-feeding female Anopheles mosquitoes invade hepatocytes for an initial round of intracellular replication, leading to the release of merozoites that invade and multiply within red blood cells. Sporozoites and merozoites share a number of proteins that are expressed by both stages, including the Apical Membrane Antigen 1 (AMA1) and the Rhoptry Neck Proteins (RONs). Although AMA1 and RONs are essential for merozoite invasion of erythrocytes during asexual blood stage replication of the parasite, their function in sporozoites is still unclear. Here we show that AMA1 interacts with RONs in mature sporozoites. By using DiCre-mediated conditional gene deletion in P. berghei, we demonstrate that loss of AMA1, RON2 or RON4 in sporozoites impairs colonization of the mosquito salivary glands and invasion of mammalian hepatocytes, without affecting transcellular parasite migration. Our data establish that AMA1 and RONs facilitate host cell invasion across Plasmodium invasive stages, and suggest that sporozoites use the AMA1-RON complex to safely enter the mosquito salivary glands without causing cell damage, to ensure successful parasite transmission. These results open up the possibility of targeting the AMA1-RON complex for transmission-blocking antimalarial strategies.


2021 ◽  
Vol 18 (2) ◽  
pp. 101-104
Author(s):  
Jungeun Kim ◽  
Hyunjoo Lee ◽  
Ji-Hoon Na ◽  
Young-Mock Lee

2021 ◽  
Vol 60 (1) ◽  
pp. 79-88
Author(s):  
Alex Wegner ◽  
Florencia Casanova ◽  
Marco Loehrer ◽  
Angelina Jordine ◽  
Stefan Bohnert ◽  
...  

2021 ◽  
pp. jmedgenet-2021-108150
Author(s):  
Aida Bertoli-Avella ◽  
Ronja Hotakainen ◽  
Maryam Al Shehhi ◽  
Alice Urzi ◽  
Catarina Pareira ◽  
...  

PurposeWe sought to describe a disorder clinically mimicking cystic fibrosis (CF) and to elucidate its genetic cause.MethodsExome/genome sequencing and human phenotype ontology data of nearly 40 000 patients from our Bio/Databank were analysed. RNA sequencing of samples from the nasal mucosa from patients, carriers and controls followed by transcriptome analysis was performed.ResultsWe identified 13 patients from 9 families with a CF-like phenotype consisting of recurrent lower respiratory infections (13/13), failure to thrive (13/13) and chronic diarrhoea (8/13), with high morbidity and mortality. All patients had biallelic variants in AGR2, (1) two splice-site variants, (2) gene deletion and (3) three missense variants. We confirmed aberrant AGR2 transcripts caused by an intronic variant and complete absence of AGR2 transcripts caused by the large gene deletion, resulting in loss of function (LoF). Furthermore, transcriptome analysis identified significant downregulation of components of the mucociliary machinery (intraciliary transport, cilium organisation), as well as upregulation of immune processes.ConclusionWe describe a previously unrecognised autosomal recessive disorder caused by AGR2 variants. AGR2-related disease should be considered as a differential diagnosis in patients presenting a CF-like phenotype. This has implications for the molecular diagnosis and management of these patients. AGR2 LoF is likely the disease mechanism, with consequent impairment of the mucociliary defence machinery. Future studies should aim to establish a better understanding of the disease pathophysiology and to identify potential drug targets.


2021 ◽  
Vol 12 ◽  
Author(s):  
Francis Muchaamba ◽  
Joseph Wambui ◽  
Roger Stephan ◽  
Taurai Tasara

Listeria monocytogenes continues to be a food safety challenge owing to its stress tolerance and virulence traits. Several listeriosis outbreaks have been linked to the consumption of contaminated ready-to-eat food products. Numerous interventions, including nisin application, are presently employed to mitigate against L. monocytogenes risk in food products. In response, L. monocytogenes deploys several defense mechanisms, reducing nisin efficacy, that are not yet fully understood. Cold shock proteins (Csps) are small, highly conserved nucleic acid-binding proteins involved in several gene regulatory processes to mediate various stress responses in bacteria. L. monocytogenes possesses three csp gene paralogs; cspA, cspB, and cspD. Using a panel of single, double, and triple csp gene deletion mutants, the role of Csps in L. monocytogenes nisin tolerance was examined, demonstrating their importance in nisin stress responses of this bacterium. Without csp genes, a L. monocytogenes ΔcspABD mutant displayed severely compromised growth under nisin stress. Characterizing single (ΔcspA, ΔcspB, and ΔcspD) and double (ΔcspBD, ΔcspAD, and ΔcspAB) csp gene deletion mutants revealed a hierarchy (cspD > cspB > cspA) of importance in csp gene contributions toward the L. monocytogenes nisin tolerance phenotype. Individual eliminations of either cspA or cspB improved the nisin stress tolerance phenotype, suggesting that their expression has a curbing effect on the expression of nisin resistance functions through CspD. Gene expression analysis revealed that Csp deficiency altered the expression of DltA, MprF, and penicillin-binding protein-encoding genes. Furthermore, the ΔcspABD mutation induced an overall more electronegative cell surface, enhancing sensitivity to nisin and other cationic antimicrobials as well as the quaternary ammonium compound disinfectant benzalkonium chloride. These observations demonstrate that the molecular functions of Csps regulate systems important for enabling the constitution and maintenance of an optimal composed cell envelope that protects against cell-envelope-targeting stressors, including nisin. Overall, our data show an important contribution of Csps for L. monocytogenes stress protection in food environments where antimicrobial peptides are used. Such knowledge can be harnessed in the development of better L. monocytogenes control strategies. Furthermore, the potential that Csps have in inducing cross-protection must be considered when combining hurdle techniques or using them in a series.


mBio ◽  
2021 ◽  
Author(s):  
Ludimila Dias Almeida ◽  
Ali Salim Faraj Silva ◽  
Daniel Calixto Mota ◽  
Adrielle Ayumi Vasconcelos ◽  
Antônio Pedro Camargo ◽  
...  

Our library of double transporter deletion strains is a powerful tool for rapid identification of potential drug import and export routes, which can aid in determining the chemical groups necessary for transport via specific carriers. This information may be translated into a better design of drugs for optimal absorption by target tissues and the development of drugs whose utility is less likely to be compromised by the selection of resistant mutants.


2021 ◽  
Author(s):  
Charles Coluzzi ◽  
Maria del Pilar Garcillán-Barcia ◽  
Fernando de la Cruz ◽  
Eduardo P.C. Rocha

AbstractConjugation drives horizontal gene transfer of many adaptive traits across prokaryotes. Yet, only a fourth of the plasmids encode the functions necessary to conjugate autonomously, others being non-mobile or mobilizable by other elements. How these different plasmids evolve is poorly understood. Here, we studied plasmid evolution in terms of their gene repertoires and relaxases. We observed that gene content in plasmid varies rapidly in relation to the rate of evolution of relaxases, such that plasmids with 95% identical relaxases have on average fewer than 50% of homologs. The identification of 249 recent transitions in terms of mobility types revealed that they are associated with even greater changes in gene repertoires, possibly mediated by transposable elements that are more abundant in such plasmids. These changes include pseudogenization of the conjugation locus, exchange of replication initiators, and extensive gene loss. In some instances, the transition between mobility types also leads to the genesis of novel plasmid taxonomic units. Most of these transitions are short-lived, suggesting a source-sink dynamic, where conjugative plasmids constantly generate mobilizable and putatively non-mobilizable plasmids by gene deletion. Yet, in few cases such transitions resulted in the emergence of large clades of relaxases present only in mobilizable plasmids, suggesting successful specialization of these families in the hijacking of diverse conjugative systems. Our results shed further light on the huge plasticity of plasmids, suggest that many non-conjugative plasmids emerged recently from conjugative elements and allowed to quantify how changes in plasmid mobility shape the variation of their gene repertoires.


2021 ◽  
Author(s):  
Geoffroy Delplancq ◽  
Mohamed Abdelatif Boukebir ◽  
Daniel Amsallem ◽  
Laurent Thines ◽  
Virginie Rozé ◽  
...  

AbstractPotocki–Schaffer syndrome includes multiple exostoses, parietal foramina, and variable developmental delay/intellectual disability. It is associated with a heterozygous deletion of the 11p12p11.2 region. In some cases, the deletion extends to the WAGR locus (11p13p12). We describe here a 9-month-old girl harboring the largest germline heterozygous deletion characterized so far. Oligohydramnios and parietal foramina were noticed during pregnancy. No patient has been diagnosed before with concomitance of these two syndromes during the prenatal period. Cytogenetic diagnosis was anticipated on basis of clinical and radiological signs. Postnatal conventional karyotype confirmed an interstitial 11p deletion: 46,XX,del(11)(p11.2p15.1). Array-comparative genomic hybridization characterized a 29.6 Mb deletion. Our case illustrates the interest of high-resolution genomic approaches to correlate adequately clinical phenotypes with specific genes in suspected contiguous gene deletion syndromes.


Sign in / Sign up

Export Citation Format

Share Document