scholarly journals On a condition that a trigonometrical series should have a certain form

1. In a recent communication to the Society I have illustrated the fact that the derived series of the Fourier series of functions of bounded variation play a definite part in the theory of Fourier series. Some of the more interesting theorems in that theory can only be stated in all their generality when the coefficients of such derived series take the place of the Fourier constants of a function. I have also recently shown that Lebesgue’s theorem, whether in its original or in its extended form, with regard to the usual convergence of a Fourier series when summed in the Cesàro manner is equally true for the derived series of Fourier series of functions of bounded variation. I have also pointed out that, in considering the effect of all known convergence factors in producing usual convergence, it is immaterial whether the series considered be a Fourier series, or such a derived series. We are thus led to regard the derived series of the Fourier series of functions of bounded variation as a kind of pseudo-Fourier series, possessing properly so-called. In particular we are led to ask ourselves what is the necessary and sufficient condition that a trigonometrical series should have the form in question. One answer is of course immediate. The integrated series must converge to a function of bounded variation. This is merely a statement in slightly different language of the property in question. We require a condition of a simpler formal character, one which does not require us to solve the difficult problem as to whether an assigned trigonometrical series not only converges but also has for sum a function of bounded variation.

1. The necessary and sufficient condition that a trigonometrical series should be a Fourier series is that the integrated series should converge to an integral throughout the closed interval of periodicity, and should be the Courier series, accordingly, of an integral. Conversely, starting with the Courier series of an integral and differentiating it term by term, we obtain the Courier series of the most general type, namely, one associated with any function possessing an absolutely convergent integral. If the Courier series which is differentiated is not the Courier series of an integral, but of a function which fails to be an integral, at even a single point, the derived series will not lie a Courier series.


1. Functions which are summable may be such that certain functions of them are themselves summable. When this is the case they will possess certain special properties additional to those which the mere summability involves. A remarkable instance where this has been recognised is in the case of summable functions whose squares also are summable. The—in its formal statement almost self-evident—Theorem of Parseval which asserts that the sum of the squares of the coefficients of a Fourier series of a function f ( x ) is equal to the integral of the square of f ( x ), taken between suitable limits and multiplied by a suitable constant, has been recognised as true for all functions whose squares are summable. Moreover, not only has the converse of this been shown to be true, but writers have been led to develop a whole theory of this class of functions, in connection more especially with what are known as integral equations. That functions whose (1 + p )th power is summable, where p >0, but is not necessarily unity, should next be considered, was, of course, inevitable. As was to be expected, it was rather the integrals of such functions than the functions themselves whose properties were required. Lebesgue had already given the necessary and sufficient condition that a function should be an integral of a summable function. F. Riesz then showed that the necessary and sufficient condition that a function should be the integral of a function whose (1 + p )th power is summable had a form which constituted rather the generalisation of tire expression of the fact that such a function has bounded variation, than one which included the condition of Lebesgue as a particular case.


Sign in / Sign up

Export Citation Format

Share Document