scholarly journals CGRP Receptor Family and Accessory Protein Localization: Implications for Predicted Function

2001 ◽  
Vol 1 ◽  
pp. 10-10
Author(s):  
K.R. Oliver

Calcitonin gene-related peptide (CGRP), adrenomedullin, amylin, and calcitonin are functionally related neuropeptides. Certain of these peptides mediate their action through receptors which have common components, such as the receptor activity modifying proteins (RAMPs) and CGRP-receptor component protein, as well as possibly through other distinct receptors. Specifically, the molecular pharmacology of CGRP and adrenomedullin is determined by coexpression of one of three receptor activity-modifying proteins (RAMPs) with calcitonin receptor-like receptor (CRLR). Additionally, through formation of another hetero-oligomer, RAMPs also govern the pharmacology of the calcitonin receptor, which in association with RAMP1 or RAMP3, binds amylin with high affinity. We have used multiple approaches to discern the regional and cellular expression of these various receptor components and binding sites for the above neuropeptides in multiple species and in different tissues. Techniques applied include in situ hybridization, immunohistochemistry and radioligand autoradiography. These data allow further understanding of both the complexity of receptor-receptor component and receptor-ligand interactions in vivo. Interestingly, these localization data suggest that RAMPs may interact with receptors additional to those already identified for the CGRP family and may be involved in binding innate neuropeptides or other neurotransmitters which are not members of the calcitonin gene-related peptide fam

2004 ◽  
Vol 84 (3) ◽  
pp. 903-934 ◽  
Author(s):  
Susan D. Brain ◽  
Andrew D. Grant

This review summarizes the receptor-mediated vascular activities of calcitonin gene-related peptide (CGRP) and the structurally related peptide adrenomedullin (AM). CGRP is a 37-amino acid neuropeptide, primarily released from sensory nerves, whilst AM is produced by stimulated vascular cells, and amylin is secreted from the pancreas. They share vasodilator activity, albeit to varying extents depending on species and tissue. In particular, CGRP has potent activity in the cerebral circulation, which is possibly relevant to the pathology of migraine, whilst vascular sources of AM contribute to dysfunction in cardiovascular disease. Both peptides exhibit potent activity in microvascular beds. All three peptides can act on a family of CGRP receptors that consist of calcitonin receptor-like receptor (CL) linked to one of three receptor activity-modifying proteins (RAMPs) that are essential for functional activity. The association of CL with RAMP1 produces a CGRP receptor, with RAMP2 an AM receptor and with RAMP3 a CGRP/AM receptor. Evidence for the selective activity of the first nonpeptide CGRP antagonist BIBN4096BS for the CGRP receptor is presented. The cardiovascular activity of these peptides in a range of species and in human clinical conditions is detailed, and potential therapeutic applications based on use of antagonists and gene targeting of agonists are discussed.


2004 ◽  
Vol 65 (1) ◽  
pp. 207-213 ◽  
Author(s):  
Kenji Kuwasako ◽  
Yuan-Ning Cao ◽  
Yasuko Nagoshi ◽  
Toshihiro Tsuruda ◽  
Kazuo Kitamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document