peptide receptors
Recently Published Documents


TOTAL DOCUMENTS

767
(FIVE YEARS 54)

H-INDEX

63
(FIVE YEARS 5)

2021 ◽  
Vol 22 (24) ◽  
pp. 13656
Author(s):  
Katarzyna Kaczyńska ◽  
Dominika Zając ◽  
Piotr Wojciechowski ◽  
Monika Jampolska

Numerous regulatory peptides play a critical role in the pathogenesis of airway inflammation, airflow obstruction and hyperresponsiveness, which are hallmarks of asthma. Some of them exacerbate asthma symptoms, such as neuropeptide Y and tachykinins, while others have ameliorating properties, such as nociception, neurotensin or β-defensin 2. Interacting with peptide receptors located in the lungs or on immune cells opens up new therapeutic possibilities for the treatment of asthma, especially when it is resistant to available therapies. This article provides a concise review of the most important and current findings regarding the involvement of regulatory peptides in asthma pathology.


2021 ◽  
Vol 22 (23) ◽  
pp. 13154
Author(s):  
Paola Cuomo ◽  
Chiara Medaglia ◽  
Ivana Allocca ◽  
Angela Michela Immacolata Montone ◽  
Fabrizia Guerra ◽  
...  

The identification of novel strategies to control Helicobacter pylori (Hp)-associated chronic inflammation is, at present, a considerable challenge. Here, we attempt to combat this issue by modulating the innate immune response, targeting formyl peptide receptors (FPRs), G-protein coupled receptors that play key roles in both the regulation and the resolution of the innate inflammatory response. Specifically, we investigated, in vitro, whether Caulerpin—a bis-indole alkaloid isolated from algae of the genus Caulerpa—could act as a molecular antagonist scaffold of FPRs. We showed that Caulerpin significantly reduces the immune response against Hp culture filtrate, by reverting the FPR2-related signaling cascade and thus counteracting the inflammatory reaction triggered by Hp peptide Hp(2–20). Our study suggests Caulerpin to be a promising therapeutic or adjuvant agent for the attenuation of inflammation triggered by Hp infection, as well as its related adverse clinical outcomes.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jiahui Zhu ◽  
Lingfei Li ◽  
Jiao Ding ◽  
Jinyu Huang ◽  
Anwen Shao ◽  
...  

Formyl peptide receptors (FPRs) are a group of G protein-coupled cell surface receptors that play important roles in host defense and inflammation. Owing to the ubiquitous expression of FPRs throughout different cell types and since they interact with structurally diverse chemotactic agonists, they have a dual function in inflammatory processes, depending on binding with different ligands so that accelerate or inhibit key intracellular kinase-based regulatory pathways. Neuroinflammation is closely associated with the pathogenesis of neurodegenerative diseases, neurogenic tumors and cerebrovascular diseases. From recent studies, it is clear that FPRs are important biomarkers for neurological diseases as they regulate inflammatory responses by monitoring glial activation, accelerating neural differentiation, regulating angiogenesis, and controlling blood brain barrier (BBB) permeability, thereby affecting neurological disease progression. Given the complex mechanisms of neurological diseases and the difficulty of healing, we are eager to find new and effective therapeutic targets. Here, we review recent research about various mechanisms of the effects generated after FPR binding to different ligands, role of FPRs in neuroinflammation as well as the development and prognosis of neurological diseases. We summarize that the FPR family has dual inflammatory functional properties in central nervous system. Emphasizing that FPR2 acts as a key molecule that mediates the active resolution of inflammation, which binds with corresponding receptors to reduce the expression and activation of pro-inflammatory composition, govern the transport of immune cells to inflammatory tissues, and restore the integrity of the BBB. Concurrently, FPR1 is essentially related to angiogenesis, cell proliferation and neurogenesis. Thus, treatment with FPRs-modulation may be effective for neurological diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marina de Paula-Silva ◽  
Gustavo Henrique Oliveira da Rocha ◽  
Milena Fronza Broering ◽  
Maria Luíza Queiroz ◽  
Silvana Sandri ◽  
...  

Non-responsiveness to anti-TNF-α therapies presents relevant rates in inflammatory bowel disease patients, presenting the need to find biomarkers involved in therapeutic efficacy. Herein, we demonstrate that higher levels of colonic formyl peptide receptor 1 and annexin A1 correlate with histological recovery in Crohn’s disease patients under remission. Using the dextran sulfate sodium colitis model in mice, we suggest that infliximab induces annexin A1 expression and secretion in activated intestinal leukocytes. Conversely, this mechanism might stimulate epithelial formyl peptide receptors, inducing wound healing and consequent histological remission. Our data indicate that assessing intestinal expressions of formyl peptide receptors and annexin A1 might provide precious information on the disease activity and responsiveness to infliximab in inflammatory bowel disease patients.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lukas Busch ◽  
Stefan Vieten ◽  
Susan Brödel ◽  
Kristina Endres ◽  
Bernd Bufe

Abstract Inflammation is a central element of many neurodegenerative diseases. Formyl peptide receptors (FPRs) can trigger several receptor-dependent signal transduction pathways that play a key role in neuroinflammation and neurodegeneration. They are chemotactic receptors that help to regulate pro- and anti-inflammatory responses in most mammals. FPRs are primarily expressed in the immune and nervous systems where they interact with a complex pattern of pathogen-derived and host-endogenous molecules. Mounting evidence points towards a contribution of FPRs – via neuropathological ligands such as Amyloid beta, and neuroprotective ligands such as Humanin, Lipoxin A4, and Annexin A1 – to multiple pathological aspects of neurodegenerative diseases. In this review, we aim to summarize the interplay of FPRs with neuropathological and neuroprotective ligands. Next, we depict their capability to trigger a number of ligand-dependent cell signaling pathways and their potential to interact with additional intracellular cofactors. Moreover, we highlight first studies, demonstrating that a pharmacological inhibition of FPRs helps to ameliorate neuroinflammation, which may pave the way towards novel therapeutic strategies.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Antonia Cianciulli ◽  
Liam Coulthard ◽  
Owen Hawksworth ◽  
John D. Lee ◽  
Xaria X. Li ◽  
...  

Complement peptide receptors (nomenclature as agreed by the NC-IUPHAR subcommittee on Complement peptide receptors [107]) are activated by the endogenous ~75 amino-acid anaphylatoxin polypeptides C3a and C5a, generated upon stimulation of the complement cascade. C3a and C5a exert their functions through binding to their receptors (C3aR, C5aR1 and C5aR2), causing cell recruitment and triggering cellular degranulation that contributes to local inflammation.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Ross Bathgate ◽  
Thomas Dschietzig ◽  
Andrew L. Gundlach ◽  
Michelle Halls ◽  
Roger Summers

Relaxin family peptide receptors (RXFP, nomenclature as agreed by the NC-IUPHAR Subcommittee on Relaxin family peptide receptors [18, 81]) may be divided into two pairs, RXFP1/2 and RXFP3/4. Endogenous agonists at these receptors are heterodimeric peptide hormones structurally related to insulin: relaxin-1, relaxin, relaxin-3 (also known as INSL7), insulin-like peptide 3 (INSL3) and INSL5. Species homologues of relaxin have distinct pharmacology and relaxin interacts with RXFP1, RXFP2 and RXFP3, whereas mouse and rat relaxin selectively bind to and activate RXFP1 [184]. relaxin-3 is the ligand for RXFP3 but it also binds to RXFP1 and RXFP4 and has differential affinity for RXFP2 between species [183]. INSL5 is the ligand for RXFP4 but is a weak antagonist of RXFP3. relaxin and INSL3 have multiple complex binding interactions with RXFP1 [189] and RXFP2 [91] which direct the N-terminal LDLa modules of the receptors together with a linker domain to act as a tethered ligand to direct receptor signaling [186]. INSL5 and relaxin-3 interact with their receptors using distinct residues in their B-chains for binding, and activation, respectively [225, 104].


2021 ◽  
Author(s):  
Nicole M Paterson ◽  
Hussein Al-Zubieri ◽  
Joseph Ragona ◽  
Juan Tirado ◽  
Brian V Geisbrecht ◽  
...  

The detection of invasive pathogens is critical for host immune defense. Cell surface receptors play a key role in the recognition of diverse microbe-associated molecules, triggering leukocyte recruitment, phagocytosis, release of antimicrobial factors, and cytokine production. The intense selective forces acting on innate immune receptor genes has led to their rapid diversification across plant and animal species. However, the impacts of this genetic variation on immune functions are often unclear. Formyl peptide receptors (FPRs) are a family of animal G-protein coupled receptors which are activated in response to a variety of ligands including formylated bacterial peptides, microbial virulence factors, and host-derived peptides. Here we investigate patterns of gene loss, sequence diversity, and ligand recognition among primate and carnivore FPRs. We observe that FPR1, which plays a critical role in innate immune defense in humans, has been lost in New World primates. Patterns of amino acid variation in FPR1 and FPR2 suggest a history of repeated positive selection acting on extracellular domains involved in ligand binding. To assess the consequences of FPR variation on bacterial ligand recognition, we measured interactions between primate FPRs and the FPR agonist Staphylococcus aureus enterotoxin B, as well as S. aureus FLIPr-like which functions as an FPR inhibitor. We find that comparatively few sequence differences between great ape FPRs are sufficient to modulate recognition of S. aureus ligands, further demonstrating how genetic variation can act to tune FPR activation in response to diverse microbial binding partners. Together this study reveals how rapid evolution of host immune receptors shapes the detection of diverse microbial molecules.


Sign in / Sign up

Export Citation Format

Share Document