scholarly journals Crystal structure of 15-(naphthalen-1-yl)-7,7a,8,9,10,11-hexahydro-6a,12a-(methanoepoxymethano)indolizino[2,3-c]quinoline-6,13(5H)-dione

2015 ◽  
Vol 71 (3) ◽  
pp. o150-o151
Author(s):  
M. P. Savithri ◽  
M. Suresh ◽  
R. Raghunathan ◽  
R. Raja ◽  
A. SubbiahPandi

In the title compound, C27H24N2O3, the dihedral angle between the mean planes of the dihydrofuran and 3,4-dihydroquinoline ring systems is 70.65 (9)°. The dihydrofuran ring adopts an envelope conformation with the C atom adjacent to the methylene C atom of the pyrrolidine ring as the flap. The five-membered pyrrolidine ring adopts a twist conformation on the N—C(tetrasubstituted) bond. In the crystal, molecules are linkedviapairs of N—H...O hydrogen bonds, forming inversion dimers with anR22(8) ring motif. The dimers are linkedviapairs of C—H...O hydrogen bonds, forming ribbons enclosingR22(12) ring motifs lying in a plane parallel to (01-1).

Author(s):  
Qi-Di Zhong ◽  
Sheng-Quan Hu ◽  
Hong Yan

In the title compound, C13H12N2O2(I), the mean planes of the pyrrole and benzyl rings are approximately perpendicular, forming a dihedral angle of 87.07 (4) °. There is an intramolecular N—H...O hydrogen bond forming an S(7) ring motif. In the crystal, molecules are linkedviaa pair of N—H...O hydrogen bonds forming inversion dimers. C—H...O hydrogen bonds link the dimers into chains along direction [10-1]. The chains are further linked by weak C—H...π interactions forming layers parallel to theacplane.


2015 ◽  
Vol 71 (12) ◽  
pp. o1010-o1011
Author(s):  
Rahhal El Ajlaoui ◽  
El Mostapha Rakib ◽  
Issam Forsal ◽  
Mohamed Saadi ◽  
Lahcen El Ammari

In the title compound, C13H10BrNOS2, the rhodanine (systematic name: 2-sulfanylidene-1,3-thiazolidin-4-one) and the 3-bromobenzylidene ring systems are inclined slightly, forming a dihedral angle of 5.86 (12)°. The rhodanine moiety is linked to an allyl group at the N atom and to the 3-bromobenzylidene ring system. The allyl group, C=C—C, is nearly perpendicular to the mean plane through the rhodanine ring, maling a dihedral angle of 87.2 (5)°. In the crystal, molecules are linked by pairs of C—H...O hydrogen bonds, forming inversion dimers with anR22(10) ring motif.


2015 ◽  
Vol 71 (10) ◽  
pp. 1140-1142 ◽  
Author(s):  
Hong-Shun Sun ◽  
Yu-long Li ◽  
Hong Jiang ◽  
Ning Xu ◽  
Hong Xu

In the title compound, C27H21FN2O4, the mean planes of the indole ring systems (r.m.s. deviations = 0.0263 and 0.0160 Å) are approximately perpendicular to one another, making a dihedral angle of 84.0 (5)°; the fluorobenzene ring is twisted with respect to the mean planes of the two indole ring systems at 89.5 (5) and 84.6 (3)°. In the crystal, pairs of N—H...O hydrogen bonds link the molecules into inversion dimers, which are further linked by N—H...O hydrogen bonds into supramolecular chains propagated along theb-axis direction. Weak C—H...π interactions are observed between neighbouring chains.


2014 ◽  
Vol 70 (10) ◽  
pp. o1114-o1115
Author(s):  
Seonghwa Cho ◽  
Jineun Kim ◽  
Gihaeng Kang ◽  
Tae Ho Kim

The title compound, C10H13Cl2FN2O2S2{systematic name:N-[(dichlorofluoromethyl)sulfanyl]-N′,N′-dimethyl-N-p-tolylsulfamide}, is a well known fungicide. The dihedral angle between the mean plane of the dimethylamino group and that of the benzene ring is 32.3 (3)°. One Cl atom and one F atom of the dichlorofluoromethylthio group are disordered over two sets of sites with an occupancy ratio of 0.605 (9):0.395 (9). In the crystal structure, two C—H...Cl hydrogen bonds link adjacent molecules, forming dimers withR22(14) loops. C—H...O hydrogen bonds link pairs of dimers into chains along theb-axis direction. These chains are joined by an additional C—H...O contact, generating a sheet in theabplane.


2014 ◽  
Vol 70 (8) ◽  
pp. o839-o839
Author(s):  
Takeshi Oishi ◽  
Makoto Yoritate ◽  
Takaaki Sato ◽  
Noritaka Chida

In the title compound, C16H19NO3, the pyrrolidine ring is in a twist conformation. The dihedral angle between the dihydrofuran ring [maximum deviation = 0.0016 (11) Å] and the phenyl ring is 47.22 (8)°. In the crystal, molecules are linked by weak C—H...O hydrogen bonds, forming helical chains along theb-axis direction. The chains are further linked by C—H...π interactions to constitute a three-dimensional architecture.


2015 ◽  
Vol 71 (3) ◽  
pp. o148-o149
Author(s):  
M. P. Savithri ◽  
M. Suresh ◽  
R. Raghunathan ◽  
R. Raja ◽  
A. SubbiahPandi

In the title compound, C23H20N2O4S2, the central pyrrolidine ring adopts an envelope conformation with the spiro C atom, shared with the benzothiophene ring system, as the flap. The thiazole ring has a twisted conformation on the S—C bond, where the C atom is that closest to methine C atom. The mean planes of the benzothiophene and indoline ring systems are inclined to the mean plane of the central pyrrolidine ring by 82.75 (8) and 80.03 (8)°, respectively, and to each other by 61.49 (6)°. In the crystal, molecules are linkedviapairs of N—H...O hydrogen bonds, forming inversion dimers with anR22(8) ring motif. The dimers are linkedviaC—H...O and C—H...N hydrogen bonds, forming a three-dimensional structure. The ethoxycarbonyl group is disordered over two orientations, with an occupancy ratio of 0.717 (12):0.283 (12).


2014 ◽  
Vol 70 (9) ◽  
pp. o1011-o1012
Author(s):  
Manpreet Kaur ◽  
Jerry P. Jasinski ◽  
Channappa N. Kavitha ◽  
Hemmige S. Yathirajan ◽  
K. Byrappa

In the title compound, C22H19ClN2O3S, the dihedral angle between the mean planes of the thiophene ring and the chlorophenyl and hydroxyphenyl rings are 70.1 (1) and 40.2 (4)°, respectively. The benzene rings are twisted with respect to each other by 88.9 (3)°. The imine bond lies in anEconformation. Intramolecular O—H...N and N—H...O hydrogen bonds each generateS(6) ring motifs. In the crystal, weak C—H...O interactions link the molecules, forming chains along thecaxis and zigzag chains along thebaxis, generating sheets lying parallel to (100).


2014 ◽  
Vol 70 (5) ◽  
pp. o540-o540
Author(s):  
Vinodhkumar Vijayakumar ◽  
Gunther H. Peters ◽  
M. Suresh ◽  
Raghunathan Raghavachary ◽  
G. Jagadeesan

In the title compound, C27H28N2O4, the pyrrolidine ring adopts a twist conformation. The plane of the indole ring is almost perpendicular to that of the pyrrolidine ring, making a dihedral angle of 88.50 (6)°. The planes of the naphthyl ring system and the pyrrolidine ring are tilted by an angle of 55.86 (5)°. The molecular conformation is stabilized by intramolecular O—H...O and O—H...N hydrogen bonds.


2015 ◽  
Vol 71 (3) ◽  
pp. o142-o142
Author(s):  
M. P. Savithri ◽  
M. Suresh ◽  
R. Raghunathan ◽  
R. Raja ◽  
A. SubbiahPandi

In the title compound, C23H22N2O4S, the pyrrolidine ring has an envelope conformation with the spiro C atom, shared with the indoline ring system, as the flap. The mean planes of the benzothiophene and indoline ring systems are inclined to the mean plane of the pyrrolidine ring by 88.81 (8) and 79.48 (8)°, respectively, and to each other by 68.12 (5)°. In the crystal, molecules are linkedviaC—H...O hydrogen bonds, forming chains propagating along [001].


2014 ◽  
Vol 70 (4) ◽  
pp. o446-o446
Author(s):  
Wayne H. Pearson ◽  
Shirley Lin ◽  
Lyle Isaacs

In the title compound, C8H9NO4, the pyrrolidine ring (r.m.s. deviation 0.014 Å) is almost normal to the mean plane of the propenoate group (r.m.s deviation 0.028 Å), making a dihedral angle of 86.58 (4)°. In the crystal, molecules are linkedviapairs of weak C—H...O hydrogen bonds, forming inversion dimers which stack along the c axis.


Sign in / Sign up

Export Citation Format

Share Document