Estimating exponential random graph models using sampled network data via graphon

Author(s):  
Ran He ◽  
Tian Zheng
2020 ◽  
Vol 31 (5) ◽  
pp. 1266-1276 ◽  
Author(s):  
Julian C Evans ◽  
David N Fisher ◽  
Matthew J Silk

Abstract Social network analysis is a suite of approaches for exploring relational data. Two approaches commonly used to analyze animal social network data are permutation-based tests of significance and exponential random graph models. However, the performance of these approaches when analyzing different types of network data has not been simultaneously evaluated. Here we test both approaches to determine their performance when analyzing a range of biologically realistic simulated animal social networks. We examined the false positive and false negative error rate of an effect of a two-level explanatory variable (e.g., sex) on the number and combined strength of an individual’s network connections. We measured error rates for two types of simulated data collection methods in a range of network structures, and with/without a confounding effect and missing observations. Both methods performed consistently well in networks of dyadic interactions, and worse on networks constructed using observations of individuals in groups. Exponential random graph models had a marginally lower rate of false positives than permutations in most cases. Phenotypic assortativity had a large influence on the false positive rate, and a smaller effect on the false negative rate for both methods in all network types. Aspects of within- and between-group network structure influenced error rates, but not to the same extent. In "grouping event-based" networks, increased sampling effort marginally decreased rates of false negatives, but increased rates of false positives for both analysis methods. These results provide guidelines for biologists analyzing and interpreting their own network data using these methods.


2011 ◽  
Vol 19 (1) ◽  
pp. 66-86 ◽  
Author(s):  
Skyler J. Cranmer ◽  
Bruce A. Desmarais

Methods for descriptive network analysis have reached statistical maturity and general acceptance across the social sciences in recent years. However, methods for statistical inference with network data remain fledgling by comparison. We introduce and evaluate a general model for inference with network data, the Exponential Random Graph Model (ERGM) and several of its recent extensions. The ERGM simultaneously allows both inference on covariates and for arbitrarily complex network structures to be modeled. Our contributions are three-fold: beyond introducing the ERGM and discussing its limitations, we discuss extensions to the model that allow for the analysis of non-binary and longitudinally observed networks and show through applications that network-based inference can improve our understanding of political phenomena.


2021 ◽  
Vol 64 ◽  
pp. 225-238
Author(s):  
George G. Vega Yon ◽  
Andrew Slaughter ◽  
Kayla de la Haye

2016 ◽  
Vol 46 ◽  
pp. 11-28 ◽  
Author(s):  
S. Thiemichen ◽  
N. Friel ◽  
A. Caimo ◽  
G. Kauermann

Sign in / Sign up

Export Citation Format

Share Document