network data
Recently Published Documents


TOTAL DOCUMENTS

2924
(FIVE YEARS 883)

H-INDEX

63
(FIVE YEARS 8)

Author(s):  
Benjamin Choat ◽  
Amber Pulido ◽  
Aditi S. Bhaskar ◽  
Rebecca L. Hale ◽  
Harry X. Zhang ◽  
...  

2022 ◽  
Vol 16 (2) ◽  
pp. 1-21
Author(s):  
Michael Nelson ◽  
Sridhar Radhakrishnan ◽  
Chandra Sekharan ◽  
Amlan Chatterjee ◽  
Sudhindra Gopal Krishna

Time-evolving web and social network graphs are modeled as a set of pages/individuals (nodes) and their arcs (links/relationships) that change over time. Due to their popularity, they have become increasingly massive in terms of their number of nodes, arcs, and lifetimes. However, these graphs are extremely sparse throughout their lifetimes. For example, it is estimated that Facebook has over a billion vertices, yet at any point in time, it has far less than 0.001% of all possible relationships. The space required to store these large sparse graphs may not fit in most main memories using underlying representations such as a series of adjacency matrices or adjacency lists. We propose building a compressed data structure that has a compressed binary tree corresponding to each row of each adjacency matrix of the time-evolving graph. We do not explicitly construct the adjacency matrix, and our algorithms take the time-evolving arc list representation as input for its construction. Our compressed structure allows for directed and undirected graphs, faster arc and neighborhood queries, as well as the ability for arcs and frames to be added and removed directly from the compressed structure (streaming operations). We use publicly available network data sets such as Flickr, Yahoo!, and Wikipedia in our experiments and show that our new technique performs as well or better than our benchmarks on all datasets in terms of compression size and other vital metrics.


2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-28
Author(s):  
Matthias Eichholz ◽  
Eric Hayden Campbell ◽  
Matthias Krebs ◽  
Nate Foster ◽  
Mira Mezini

Programming languages like P4 enable specifying the behavior of network data planes in software. However, with increasingly powerful and complex applications running in the network, the risk of faults also increases. Hence, there is growing recognition of the need for methods and tools to statically verify the correctness of P4 code, especially as the language lacks basic safety guarantees. Type systems are a lightweight and compositional way to establish program properties, but there is a significant gap between the kinds of properties that can be proved using simple type systems (e.g., SafeP4) and those that can be obtained using full-blown verification tools (e.g., p4v). In this paper, we close this gap by developing Π4, a dependently-typed version of P4 based on decidable refinements. We motivate the design of Π4, prove the soundness of its type system, develop an SMT-based implementation, and present case studies that illustrate its applicability to a variety of data plane programs.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Zhixue Wang

In this paper, the reliability of data transmission in social networks is thoroughly studied and analyzed using wireless sensor network topology technology. This paper, based on the introduction of sensor network reliability analysis-related technology, combined with the characteristics, and needs of the sensor network itself, focuses on the study of the reliability analysis of the sensor network under the state of perturbation scheme. Based on the idea of making full use of data changes to respond to the sensor state, this paper takes the actual monitoring data of the wireless sensor network as the research object, selects the temporal correlation and spatial correlation of the measured environmental data as the reliability index by extracting the features of the wireless sensor network data, and proposes the Evidential reasoning rule- (ER-) based wireless sensor network data reliability assessment model based on Evidential reasoning rule (ER) is proposed. The data are mined, analyzed, and quantified from the perspective of content popularity, and the interest indicators of nodes on data under content popularity are analyzed to derive stable interest quantification values. Combined with the network properties, i.e., node autoassembly community, we analyze the data dissemination characteristics of social networks in wireless sensor network topology environment and derive the upper and lower bounds of data transmission capacity under node interest-driven and its variation on network performance. Social relationships among nodes affected by social attributes are considered; in turn, the data forwarding behavior of nodes is modeled using data transmission probability and data reception probability; finally, the data forwarding process is analyzed and a closed expression for the average end-to-end transmission capacity is derived in turn.


Author(s):  
N. Raghavendra Sai ◽  
Tirandasu Ravi Kumar ◽  
S. Sandeep Kumar ◽  
A. Pavan Kumar ◽  
M. Jogendra Kumar

Sign in / Sign up

Export Citation Format

Share Document