Computing periodic solutions for a CD-player with impact using piecewise linear shooting

Author(s):  
M. Heertjes ◽  
F. Sperling ◽  
R. van de Molengraft
2015 ◽  
Vol 25 (11) ◽  
pp. 1550144 ◽  
Author(s):  
Jaume Llibre ◽  
Douglas D. Novaes ◽  
Marco A. Teixeira

We study a class of discontinuous piecewise linear differential systems with two zones separated by the straight line x = 0. In x > 0, we have a linear saddle with its equilibrium point living in x > 0, and in x < 0 we have a linear differential center. Let p be the equilibrium point of this linear center, when p lives in x < 0, we say that it is real, and when p lives in x > 0 we say that it is virtual. We assume that this discontinuous piecewise linear differential system formed by the center and the saddle has a center q surrounded by periodic orbits ending in a homoclinic orbit of the saddle, independent if p is real, virtual or p is in x = 0. Note that q = p if p is real or p is in x = 0. We perturb these three classes of systems, according to the position of p, inside the class of all discontinuous piecewise linear differential systems with two zones separated by x = 0. Let N be the maximum number of limit cycles which can bifurcate from the periodic solutions of the center q with these perturbations. Our main results show that N = 2 when p is on x = 0, and N ≥ 2 when p is a real or virtual center. Furthermore, when p is a real center we found an example satisfying N ≥ 3.


2017 ◽  
Vol 27 (02) ◽  
pp. 1730010 ◽  
Author(s):  
David J. W. Simpson ◽  
Christopher P. Tuffley

We establish an equivalence between infinitely many asymptotically stable periodic solutions and subsumed homoclinic connections for [Formula: see text]-dimensional piecewise-linear continuous maps. These features arise as a codimension-three phenomenon. The periodic solutions are single-round: they each involve one excursion away from a central saddle-type periodic solution. The homoclinic connection is subsumed in the sense that one branch of the unstable manifold of the saddle solution is contained entirely within its stable manifold. The results are proved by using exact expressions for the periodic solutions and components of the stable and unstable manifolds which are available because the maps are piecewise-linear. We also describe a practical approach for finding this phenomenon in the parameter space of a map and illustrate the results with the three-dimensional border-collision normal form.


Sign in / Sign up

Export Citation Format

Share Document