An efficiency study on the urban solid waste gasification process for electric power generation

Author(s):  
Joao Teles de Menezes Neto ◽  
Aylton Jose Alves ◽  
Vinicius Carvalhaes
2015 ◽  
Author(s):  
Roberto José Páez Salgado ◽  
Luisa Fernanda Marzola Atencia ◽  
Jorge Mario Mendoza Fandiño ◽  
Adrián Enrique Ávila Gómez ◽  
Juan Fernando Arango Meneses

This research is based on obtaining a mathematical model to determine the efficiency of generating a generator coupled to a biomass gasification process. To do this, it is initially simulated internal combustion engine at the Aspen hysys® licensed software, in order to obtain the shaft work and a representative model of the generation efficiency of the motor; according to the characteristics of the power cycle and product gas from the gasification of agricultural biomass prevailing in the Department of Córdoba – Colombia: Cotton waste (Gossypium hirsutum), Rice husk (Oryza sativa), Sesame stalk (Sesamum indicum), Corn cob (Zea mays) and Coconut fiber (Cocos nucifera). Subsequently, the generator efficiency is evaluated by the electric power generation simulation phase in the Simulink Toolbox of the MATLAB® software. The deterministic mathematical models resulting from the simulations above are adjusted by statistical techniques to experimental data and a regression model that assesses the overall system efficiency is obtained. Such efficiencies range from 16 to 20%. Therefore it is concluded that the use of representative crops biomass product’s calorific values in the Department of Córdoba -Colombia, are profitable for electric power generation. On the other hand, it is important to note that experimental data’s reliable and monitored way acquisition was performed through the SCADA developing; it allowed real time process variables’ intervention presentation.


2014 ◽  
Vol 11 (3) ◽  
pp. 379-390 ◽  
Author(s):  
Ivaylo Ganev ◽  
Iliyana Naydenova

Potential opportunities for electric power generation from landfill gas (LFG) utilization were estimated for the second largest landfill site in Bulgaria, situated near the city of Plovdiv. The work performed was based on detailed analysis of experimentally obtained and model-predicted features of the ?Tsalapitsa? landfill site. The study presents a short description of the site, the global characteristics of the disposed municipal solid waste, and the experimentally obtained methane composition of the LFG. Based on the above described observations, the potential for LFG recovery at ?Tsalapitsa? was determined, together with that for electric power generation for the next 25 years. A set of recommendations was then developed regarding the parameters required for the installation of electric power generation from LFG in Plovdiv.


Author(s):  
Felipe Raul Ponce Arrieta ◽  
Cláudio Augusto Gomes Filho ◽  
Italo Henrique Machado da Silva ◽  
Hudson Gustavo de Souza

Energy ◽  
2018 ◽  
Vol 152 ◽  
pp. 46-56 ◽  
Author(s):  
Mahdi Rezaei ◽  
Barat Ghobadian ◽  
Seyed Hashem Samadi ◽  
Samira Karimi

Sign in / Sign up

Export Citation Format

Share Document