Code-based Algorithm for Coalition Structure Generation

Author(s):  
Redha Taguelmimt ◽  
Samir Aknine ◽  
Djamila Boukredera ◽  
Narayan Changder
Author(s):  
Tenda Okimoto ◽  
Nicolas Schwind ◽  
Emir Demirović ◽  
Katsumi Inoue ◽  
Pierre Marquis

2021 ◽  
Vol 72 ◽  
pp. 1215-1250
Author(s):  
Michele Flammini ◽  
Gianpiero Monaco ◽  
Luca Moscardelli ◽  
Mordechai Shalom ◽  
Shmuel Zaks

We consider the online version of the coalition structure generation problem, in which agents, corresponding to the vertices of a graph, appear in an online fashion and have to be partitioned into coalitions by an authority (i.e., an online algorithm). When an agent appears, the algorithm has to decide whether to put the agent into an existing coalition or to create a new one containing, at this moment, only her. The decision is irrevocable. The objective is partitioning agents into coalitions so as to maximize the resulting social welfare that is the sum of all coalition values. We consider two cases for the value of a coalition: (1) the sum of the weights of its edges, and (2) the sum of the weights of its edges divided by its size. Coalition structures appear in a variety of application in AI, multi-agent systems, networks, as well as in social networks, data analysis, computational biology, game theory, and scheduling. For each of the coalition value functions we consider the bounded and unbounded cases depending on whether or not the size of a coalition can exceed a given value α. Furthermore, we consider the case of a limited number of coalitions and various weight functions for the edges, i.e., unrestricted, positive and constant weights. We show tight or nearly tight bounds for the competitive ratio in each case.


Author(s):  
Gianluigi Greco ◽  
Antonella Guzzo

Coalition structure generation is considered in a setting where feasible coalition structures must satisfy constraints of two different kinds modeled in terms of a valuation structure, which consists of a set of pivotal agents that are pairwise incompatible, plus an interaction graph prescribing that a coalition C can form only if the subgraph induced over the nodes/agents in C is connected. It is shown that valuation structures can be used to model a number of relevant problems in real-world applications. Moreover, complexity issues arising with them are studied, by focusing in particular on identifying islands of tractability based on topological properties of the underlying interaction graph. Stability issues on valuation structures are studied too.


Sign in / Sign up

Export Citation Format

Share Document