anytime algorithm
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 17)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Abhishek Ray ◽  
Mario Ventresca ◽  
Karthik Kannan

Iterative combinatorial auctions are known to resolve bidder preference elicitation problems. However, winner determination is a known key bottleneck that has prevented widespread adoption of such auctions, and adding a time-bound to winner determination further complicates the mechanism. As a result, heuristic-based methods have enjoyed an increase in applicability. We add to the growing body of work in heuristic-based winner determination by proposing an ant colony metaheuristic–based anytime algorithm that produces optimal or near-optimal winner determination results within specified time. Our proposed algorithm resolves the speed versus accuracy problem and displays superior performance compared with 20 past state-of-the-art heuristics and two exact algorithms, for 94 open test auction instances that display a wide variety in bid-bundle composition. Furthermore, we contribute to the literature in two predominant ways: first, we represent the winner determination problem as one of finding the maximum weighted path on a directed cyclic graph; second, we improve upon existing ant colony heuristic–based exploration methods by implementing randomized pheromone updating and randomized graph pruning. Finally, to aid auction designers, we implement the anytime property of the algorithm, which allows auctioneers to stop the algorithm and return a valid solution to the winner determination problem even if it is interrupted before computation ends.


2021 ◽  
Author(s):  
Qinyuan Li ◽  
Minyi Li ◽  
Bao Quoc Vo ◽  
Ryszard Kowalczyk

2021 ◽  
pp. 027836492110376
Author(s):  
Haruki Nishimura ◽  
Mac Schwager

We propose a novel belief space planning technique for continuous dynamics by viewing the belief system as a hybrid dynamical system with time-driven switching. Our approach is based on the perturbation theory of differential equations and extends sequential action control to stochastic dynamics. The resulting algorithm, which we name SACBP, does not require discretization of spaces or time and synthesizes control signals in near real-time. SACBP is an anytime algorithm that can handle general parametric Bayesian filters under certain assumptions. We demonstrate the effectiveness of our approach in an active sensing scenario and a model-based Bayesian reinforcement learning problem. In these challenging problems, we show that the algorithm significantly outperforms other existing solution techniques including approximate dynamic programming and local trajectory optimization.


Computability ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 155-166
Author(s):  
Cristian S. Calude ◽  
Monica Dumitrescu

2020 ◽  
Vol 34 (04) ◽  
pp. 3267-3274
Author(s):  
Chao Bian ◽  
Chao Feng ◽  
Chao Qian ◽  
Yang Yu

In this paper, we study the problem of selecting a subset from a ground set to maximize a monotone objective function f such that a monotone cost function c is bounded by an upper limit. State-of-the-art algorithms include the generalized greedy algorithm and POMC. The former is an efficient fixed time algorithm, but the performance is limited by the greedy nature. The latter is an anytime algorithm that can find better subsets using more time, but without any polynomial-time approximation guarantee. In this paper, we propose a new anytime algorithm EAMC, which employs a simple evolutionary algorithm to optimize a surrogate objective integrating f and c. We prove that EAMC achieves the best known approximation guarantee in polynomial expected running time. Experimental results on the applications of maximum coverage, influence maximization and sensor placement show the excellent performance of EAMC.


Sign in / Sign up

Export Citation Format

Share Document