scholarly journals On the existence of MDS codes over small fields with constrained generator matrices

Author(s):  
Son Hoang Dau ◽  
Wentu Song ◽  
Chau Yuen
2018 ◽  
Vol 18 (3&4) ◽  
pp. 223-230
Author(s):  
Xianmang He

The construction of quantum error-correcting codes has been an active field of quantum information theory since the publication of \cite{Shor1995Scheme,Steane1998Enlargement,Laflamme1996Perfect}. It is becoming more and more difficult to construct some new quantum MDS codes with large minimum distance. In this paper, based on the approach developed in the paper \cite{NewHeMDS2016}, we construct several new classes of quantum MDS codes. The quantum MDS codes exhibited here have not been constructed before and the distance parameters are bigger than q/2.


2019 ◽  
Vol 65 (6) ◽  
pp. 3692-3701 ◽  
Author(s):  
Ryan Gabrys ◽  
Eitan Yaakobi ◽  
Mario Blaum ◽  
Paul H. Siegel
Keyword(s):  

1985 ◽  
Vol 31 (6) ◽  
pp. 826-830 ◽  
Author(s):  
R.M. Roth ◽  
G. Seroussi
Keyword(s):  

Author(s):  
Ryan Gabrys ◽  
Eitan Yaakobi ◽  
Mario Blaum ◽  
Paul H. Siegel
Keyword(s):  

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Simeon Ball ◽  
Guillermo Gamboa ◽  
Michel Lavrauw

<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ C $\end{document}</tex-math></inline-formula> be a <inline-formula><tex-math id="M2">\begin{document}$ (n,q^{2k},n-k+1)_{q^2} $\end{document}</tex-math></inline-formula> additive MDS code which is linear over <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb F}_q $\end{document}</tex-math></inline-formula>. We prove that if <inline-formula><tex-math id="M4">\begin{document}$ n \geq q+k $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ k+1 $\end{document}</tex-math></inline-formula> of the projections of <inline-formula><tex-math id="M6">\begin{document}$ C $\end{document}</tex-math></inline-formula> are linear over <inline-formula><tex-math id="M7">\begin{document}$ {\mathbb F}_{q^2} $\end{document}</tex-math></inline-formula> then <inline-formula><tex-math id="M8">\begin{document}$ C $\end{document}</tex-math></inline-formula> is linear over <inline-formula><tex-math id="M9">\begin{document}$ {\mathbb F}_{q^2} $\end{document}</tex-math></inline-formula>. We use this geometrical theorem, other geometric arguments and some computations to classify all additive MDS codes over <inline-formula><tex-math id="M10">\begin{document}$ {\mathbb F}_q $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M11">\begin{document}$ q \in \{4,8,9\} $\end{document}</tex-math></inline-formula>. We also classify the longest additive MDS codes over <inline-formula><tex-math id="M12">\begin{document}$ {\mathbb F}_{16} $\end{document}</tex-math></inline-formula> which are linear over <inline-formula><tex-math id="M13">\begin{document}$ {\mathbb F}_4 $\end{document}</tex-math></inline-formula>. In these cases, the classifications not only verify the MDS conjecture for additive codes, but also confirm there are no additive non-linear MDS codes which perform as well as their linear counterparts. These results imply that the quantum MDS conjecture holds for <inline-formula><tex-math id="M14">\begin{document}$ q \in \{ 2,3\} $\end{document}</tex-math></inline-formula>.</p>


2000 ◽  
Vol 213 (1-3) ◽  
pp. 55-65 ◽  
Author(s):  
S.M Dodunekov ◽  
I.N Landjev
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document