mds code
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 18 (2(Suppl.)) ◽  
pp. 1125
Author(s):  
Emad Bakr Abdulkareem Al-Zangana

MDS code is a linear code that achieves equality in the Singleton bound, and projective MDS (PG-MDS) is MDS code with independents property of any two columns of its generator matrix.   In this paper, elementary methods for modifying a PG-MDS code of dimensions 2, 3, as extending and lengthening, in order to find new incomplete PG-MDS codes have been used over . Also, two complete PG-MDS codes over  of length  and 28 have been found.


Author(s):  
Chun Guo ◽  
François-Xavier Standaert ◽  
Weijia Wang ◽  
Xiao Wang ◽  
Yu Yu

Motivated by the recent trend towards low multiplicative complexity blockciphers (e.g., Zorro, CHES 2013; LowMC, EUROCRYPT 2015; HADES, EUROCRYPT 2020; MALICIOUS, CRYPTO 2020), we study their underlying structure partial SPNs, i.e., Substitution-Permutation Networks (SPNs) with parts of the substitution layer replaced by an identity mapping, and put forward the first provable security analysis for such partial SPNs built upon dedicated linear layers. For different instances of partial SPNs using MDS linear layers, we establish strong pseudorandom security as well as practical provable security against impossible differential attacks. By extending the well-established MDS code-based idea, we also propose the first principled design of linear layers that ensures optimal differential propagation. Our results formally confirm the conjecture that partial SPNs achieve the same security as normal SPNs while consuming less non-linearity, in a well-established framework.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Simeon Ball ◽  
Guillermo Gamboa ◽  
Michel Lavrauw

<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ C $\end{document}</tex-math></inline-formula> be a <inline-formula><tex-math id="M2">\begin{document}$ (n,q^{2k},n-k+1)_{q^2} $\end{document}</tex-math></inline-formula> additive MDS code which is linear over <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb F}_q $\end{document}</tex-math></inline-formula>. We prove that if <inline-formula><tex-math id="M4">\begin{document}$ n \geq q+k $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ k+1 $\end{document}</tex-math></inline-formula> of the projections of <inline-formula><tex-math id="M6">\begin{document}$ C $\end{document}</tex-math></inline-formula> are linear over <inline-formula><tex-math id="M7">\begin{document}$ {\mathbb F}_{q^2} $\end{document}</tex-math></inline-formula> then <inline-formula><tex-math id="M8">\begin{document}$ C $\end{document}</tex-math></inline-formula> is linear over <inline-formula><tex-math id="M9">\begin{document}$ {\mathbb F}_{q^2} $\end{document}</tex-math></inline-formula>. We use this geometrical theorem, other geometric arguments and some computations to classify all additive MDS codes over <inline-formula><tex-math id="M10">\begin{document}$ {\mathbb F}_q $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M11">\begin{document}$ q \in \{4,8,9\} $\end{document}</tex-math></inline-formula>. We also classify the longest additive MDS codes over <inline-formula><tex-math id="M12">\begin{document}$ {\mathbb F}_{16} $\end{document}</tex-math></inline-formula> which are linear over <inline-formula><tex-math id="M13">\begin{document}$ {\mathbb F}_4 $\end{document}</tex-math></inline-formula>. In these cases, the classifications not only verify the MDS conjecture for additive codes, but also confirm there are no additive non-linear MDS codes which perform as well as their linear counterparts. These results imply that the quantum MDS conjecture holds for <inline-formula><tex-math id="M14">\begin{document}$ q \in \{ 2,3\} $\end{document}</tex-math></inline-formula>.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Alexander A. Davydov ◽  
Stefano Marcugini ◽  
Fernanda Pambianco

<p style='text-indent:20px;'>The weight distribution of the cosets of maximum distance separable (MDS) codes is considered. In 1990, P.G. Bonneau proposed a relation to obtain the full weight distribution of a coset of an MDS code with minimum distance <inline-formula><tex-math id="M1">\begin{document}$ d $\end{document}</tex-math></inline-formula> using the known numbers of vectors of weights <inline-formula><tex-math id="M2">\begin{document}$ \le d-2 $\end{document}</tex-math></inline-formula> in this coset. In this paper, the Bonneau formula is transformed into a more structured and convenient form. The new version of the formula allows to consider effectively cosets of distinct weights <inline-formula><tex-math id="M3">\begin{document}$ W $\end{document}</tex-math></inline-formula>. (The weight <inline-formula><tex-math id="M4">\begin{document}$ W $\end{document}</tex-math></inline-formula> of a coset is the smallest Hamming weight of any vector in the coset.) For each of the considered <inline-formula><tex-math id="M5">\begin{document}$ W $\end{document}</tex-math></inline-formula> or regions of <inline-formula><tex-math id="M6">\begin{document}$ W $\end{document}</tex-math></inline-formula>, special relations more simple than the general ones are obtained. For the MDS code cosets of weight <inline-formula><tex-math id="M7">\begin{document}$ W = 1 $\end{document}</tex-math></inline-formula> and weight <inline-formula><tex-math id="M8">\begin{document}$ W = d-1 $\end{document}</tex-math></inline-formula> we obtain formulas of the weight distributions depending only on the code parameters. This proves that all the cosets of weight <inline-formula><tex-math id="M9">\begin{document}$ W = 1 $\end{document}</tex-math></inline-formula> (as well as <inline-formula><tex-math id="M10">\begin{document}$ W = d-1 $\end{document}</tex-math></inline-formula>) have the same weight distribution. The cosets of weight <inline-formula><tex-math id="M11">\begin{document}$ W = 2 $\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id="M12">\begin{document}$ W = d-2 $\end{document}</tex-math></inline-formula> may have different weight distributions; in this case, we proved that the distributions are symmetrical in some sense. The weight distributions of the cosets of MDS codes corresponding to arcs in the projective plane <inline-formula><tex-math id="M13">\begin{document}$ \mathrm{PG}(2,q) $\end{document}</tex-math></inline-formula> are also considered. For MDS codes of covering radius <inline-formula><tex-math id="M14">\begin{document}$ R = d-1 $\end{document}</tex-math></inline-formula> we obtain the number of the weight <inline-formula><tex-math id="M15">\begin{document}$ W = d-1 $\end{document}</tex-math></inline-formula> cosets and their weight distribution that gives rise to a certain classification of the so-called deep holes. We show that any MDS code of covering radius <inline-formula><tex-math id="M16">\begin{document}$ R = d-1 $\end{document}</tex-math></inline-formula> is an almost perfect multiple covering of the farthest-off points (deep holes); moreover, it corresponds to an optimal multiple saturating set in the projective space <inline-formula><tex-math id="M17">\begin{document}$ \mathrm{PG}(N,q) $\end{document}</tex-math></inline-formula>.</p>


2020 ◽  
Vol 10 (11) ◽  
pp. 1014-1023
Author(s):  
雨慧 韩
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document