Further results on delay-dependent stability and robust stability of linear system with interval time-varying delay

Author(s):  
Jian-An Wang ◽  
Zhi-Gang Yin
2012 ◽  
Vol 461 ◽  
pp. 633-636
Author(s):  
Cheng Wang

The problem of delay-dependent robust stability of uncertain stochastic systems with time-varying delay is discussed in this paper. Based on the Lyapunov-Krasovskii theory and free-weighting matrix technique, new delay-dependent stability criterion is presented. The criterion is in terms of linear matrix inequality (LMI) which can be solved by various available algorithms.


2013 ◽  
Vol 427-429 ◽  
pp. 1306-1310
Author(s):  
Jun Jun Hui ◽  
He Xin Zhang ◽  
Fei Meng ◽  
Xin Zhou

In this paper, we consider the problem of robust delay-dependent stability for a class of linear uncertain systems with interval time-varying delay. By using the directly Lyapunov-Krasovskii (L-K) functional method, integral inequality approach and the free weighting matrix technique, new less conservative stability criteria for the system is formulated in terms of linear matrix inequalities .Numerical examples are given to show the effectiveness of the proposed approach.


2013 ◽  
Vol 380-384 ◽  
pp. 1774-1777
Author(s):  
He Li ◽  
Zhao Di Xu ◽  
Chang Liu

This paper addresses the problem of stability for linear systems with interval time-varying delay. By using an optimized delay-decomposition approach and being based on Lyapunov stability theory and reciprocally convex lemma, we can get the delay-dependent stability criterion which can lead to much less conservative stability results compared to other methods for linear systems with time delay. A numerical example is given to show the effectiveness of the proposed criteria.


Sign in / Sign up

Export Citation Format

Share Document