scholarly journals Some effects of n-pentane on the sodium and potassium currents of the squid giant axon.

1981 ◽  
Vol 312 (1) ◽  
pp. 57-70 ◽  
Author(s):  
D A Haydon ◽  
J E Kimura
1970 ◽  
Vol 56 (5) ◽  
pp. 583-620 ◽  
Author(s):  
Paul De Weer

A study was made of sodium efflux from squid giant axon, and its sensitivity to external K and Na. When sodium efflux from untreated axons was strongly stimulated by Ko, Nao was inhibitory; when dependence on Ko was low, Nao had a stimulatory effect. Incipient CN poisoning or apyrase injection, which produces high intracellular levels of ADP1 and Pi, rendered sodium efflux less dependent on external K and more dependent on external Na. Injection of ADP, AMP, arginine, or creatine + creatine phosphokinase, all of which raise ADP levels without raising Pi levels, had the same effect as incipient CN poisoning. Pi injection had no effect on the K sensitivity of sodium efflux. Axons depleted of arginine and phosphoarginine by injection of arginase still lost their K sensitivity when the ATP:ADP ratio was lowered and regained it partially when the ratio was raised. Rough calculations show that sodium efflux is maximally Ko-dependent when the ATP:ADP ratio is about 10:1, becomes insensitive to Ko when the ratio is about 1:2, and is inhibited by Ko when the ratio is about 1:10. Deoxy-ATP mimicked ADP when injected into intact axons. Excess Mg, as well as Pi, inhibited both strophanthidin-sensitive and strophanthidin-insensitive sodium efflux. An outline is presented for a model which might explain the effects of ADP, Pi and deoxy-ATP.


1953 ◽  
Vol 37 (1) ◽  
pp. 25-37 ◽  
Author(s):  
Harry Grundfest ◽  
Abraham M. Shanes ◽  
Walter Freygang

Decrease of the sodium concentration of the medium depresses both the spike and the associated impedance change in almost identical fashion. Elevation of the potassium level also depresses both phenomena, but affects the impedance change more than the spike; it slows the return to the initial impedance level. The effects on the threshold to brief square waves are also described. These results appear largely accounted for by the observations of Hodgkin and Huxley with the voltage clamp technique and by their recent hypothesis as to nature of the spike processes.


1982 ◽  
Vol 69 (1) ◽  
pp. 35-40 ◽  
Author(s):  
F. Conti ◽  
R. Fioravanti ◽  
J. R. Segal ◽  
W. Stühmer

1988 ◽  
Vol 30 (2) ◽  
pp. 125-135 ◽  
Author(s):  
Masato Omatsu ◽  
Koichi Murayama ◽  
Hiroshi Kitasato ◽  
Keiichiro Nishimura ◽  
Toshio Fujta

The effects of fourteen halogenated ethers on the sodium and potassium currents of voltage-clamped squid giant axons have been examined. Effects under open-circuit were also studied. In voltage-clamped axons, the ethers tended to reduce potassium currents at least as much, if not more, than sodium currents. This finding distinguishes the halogenated ethers from many other general anaesthetics. Certain, but not all, halogenated ethers induced a pronounced maximum in potassium current traces as a function of time. This property can be formally described if an inactivation term is added to the Hodgkin– Huxley equation for potassium currents. Large shifts in the sodium-current inactivation parameter h ∞ were produced in some instances. Two fully halogenated methyl ethyl ethers, known to produce convulsions in mice, depressed both sodium and potassium currents, but with a very slow time course of action. The electrophysiological effects of the halogenated ethers investigated appear to depend on the position and number of hydrogen bonds that can be formed.


Sign in / Sign up

Export Citation Format

Share Document