pressure dependence
Recently Published Documents


TOTAL DOCUMENTS

4430
(FIVE YEARS 185)

H-INDEX

99
(FIVE YEARS 8)

2021 ◽  
Vol 340 ◽  
pp. 114526
Author(s):  
Amit K. Shah ◽  
Ramila Khatiwada ◽  
Narayan P. Adhikari ◽  
Rajendra P. Adhikari

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1898
Author(s):  
Xuepeng Liu ◽  
Kezhong Xu ◽  
Hua Zhai

In the current study, molecular dynamics (MD) simulations were performed to study the pressure dependence of the structural and mechanical properties of single-crystal tungsten. The results show that single-crystal tungsten possesses noteworthy high-pressure stability and exhibits linear lattice contraction with increasing external pressure. Consistent with the results of the performed experiments, the predicted elastic moduli, including Young’s modulus, shear modulus, and bulk modulus, as well as Poisson’s ratio and Pugh’s modulus ratio, show a clear increasing trend with the increase in pressure. Under uniaxial tensile loading, the single-crystal tungsten at high pressures experiences a phase transition from BCC to FCC and other disordered structures, which results in a stripe-like morphology in the tungsten crystal. These results are expected to deepen our understanding of the high-pressure structural and mechanical behaviors of tungsten materials.


2021 ◽  
Vol 127 (21) ◽  
Author(s):  
Debarchan Das ◽  
Ritu Gupta ◽  
Christopher Baines ◽  
Hubertus Luetkens ◽  
Dariusz Kaczorowski ◽  
...  

ACS Omega ◽  
2021 ◽  
Author(s):  
Kannan Murugesan ◽  
Govindaraj Lingannan ◽  
Kento Ishigaki ◽  
Yoshiya Uwatoko ◽  
Chihiro Sekine ◽  
...  

2021 ◽  
Vol 2096 (1) ◽  
pp. 012104
Author(s):  
A V Morozova ◽  
N S Zadorozhnaya ◽  
M A Mukutadze ◽  
V I Kirishchieva

Abstract In the study, based on the micropolar fluid flow equation for a “thin layer”, the continuity equation, the equation describing the profile of the molten contour of the guide coated with a low-melting metal alloy, and the equation for the mechanical energy dissipation rate, asymptotic and exact self-similar solution has been found for the zero (without considering the melting) and first (considering the melting) approximation of wedge-shaped support with the slider support profile adapted to the friction conditions and the low-melting metal coating of the guide surface. The research has taken into account the pressure dependence of the lubricant rheological properties and the melt having micropolar properties in the laminar flow regime. Analytical dependencies have been obtained for the molten surface profile of the low-melting metal coating of the guide and the field of velocities and pressure for the zero and first approximations. Also, the basic performance characteristics of the friction pair under consideration have been determined: the bearing capacity and the friction force. The impact of parameters determined by the coating melt, adapted to the support profile friction conditions, and the parameter characterizing the pressure dependence of the lubricant viscosity on the bearing capacity and friction force has been estimated.


2021 ◽  
Author(s):  
Songrui Hou ◽  
Bo Sun ◽  
Fei Tian ◽  
Qingan Cai ◽  
Youming Xu ◽  
...  

Abstract Boron arsenide (BAs) is an ultrahigh-thermal-conductivity material with special phonon-phonon scattering behaviors. At ambient pressure, the bunching of acoustic phonon branches in BAs is believed to result in a small phase space for three-phonon scattering. Density functional theory predicts that this acoustic phonon bunching effect is sensitive to pressure and leads to an unusual pressure dependence of thermal conductivity. To explore this physics, we measure the thermal conductivity of BAs from 0 to 25 GPa using time-domain thermoreflectance in a diamond anvil cell. We characterized two BAs samples with ambient thermal conductivities of 350 and 480 W m-1 K-1. Our experiments show that the thermal conductivity of both samples depends weakly on pressure from 0 to 25 GPa. We attribute the weak pressure dependence of the thermal conductivity of BAs to the weak pressure dependence of total phonon-phonon scattering rates. Our experimental results are consistent with DFT predictions that three-phonon scattering rates increase from 0 to 25 GPa, while four-phonon scattering rates decrease.


Sign in / Sign up

Export Citation Format

Share Document