Dimensioning and Simulation of a Pilot Plant for Solar Hydrogen Production

Author(s):  
Yasmina Ziari Kerboua ◽  
Lofti Ziani ◽  
Bouziane Mahmah ◽  
Ahmed Benzaoui

Hydrogen is regarded as the potential bearer of energy of the future. Solar hydrogen is the hydrogen produced using renewable energy, particularly solar energy [15,8]. The availability of water and hours of sunshine make Algeria a place of choice for solar hydrogen production. In this work, solar hydrogen production by electrolysis of water is considered. The required energy for water dissociation is supplied by a photovoltaic system. A design and operation study of a photovoltaic system has been done for three different regions in Algeria. The production potential is highly significant particularly in the south parts of this country.

2011 ◽  
Vol 314-316 ◽  
pp. 1857-1860
Author(s):  
Yasmina Kerboua Ziari ◽  
Lotfi Ziani ◽  
Ahmed Benzaoui

Keywords: Hydrogen, Solar, Hydrogen Production, Electrolysis, Photovoltaic Panel, Simulation Abstract. Hydrogen is regarded as the potential bearer of energy of the future. Solar hydrogen is the hydrogen produced using renewable energy, particularly solar energy [8,3]. The availability of water and hours of sunshine make Algeria a place of choice for solar hydrogen production. In this work, solar hydrogen production by electrolysis of water is considered. The required energy for water dissociation is supplied by a photovoltaic system. A design and operation study of a photovoltaic system has been done for three different regions in Algeria. The production potential is highly significant particularly in the south parts of this country.


Solar Energy ◽  
2011 ◽  
Vol 85 (4) ◽  
pp. 634-644 ◽  
Author(s):  
M. Roeb ◽  
J.-P. Säck ◽  
P. Rietbrock ◽  
C. Prahl ◽  
H. Schreiber ◽  
...  

Author(s):  
Martin Roeb ◽  
Christian Sattler ◽  
Ruth Klu¨ser ◽  
Nathalie Monnerie ◽  
Lamark de Oliveira ◽  
...  

A very promising method for the conversion and storage of solar energy into a fuel is the dissociation of water to oxygen and hydrogen, carried out via a two-step process using metal oxide redox systems such as mixed iron oxides, coated upon multi-channeled honeycomb ceramic supports capable of absorbing solar irradiation, in a configuration similar to that encountered in automobile exhaust catalytic converters. With this configuration, the whole process can be carried out in a single solar energy converter, the process temperature can be significantly lowered compared to other thermo-chemical cycles and the re-combination of oxygen and hydrogen is prevented by fixing the oxygen in the metal oxide. For the realization of the integrated concept, research work proceeded in three parallel directions: synthesis of active redox systems, manufacture of ceramic honeycomb supports and manufacture, testing and optimization of operating conditions of a thermochemical solar receiver-reactor. The receiver-reactor has been developed and installed in the solar furnace in Cologne, Germany. It was proven that solar hydrogen production is feasible by this process demonstrating that multi cycling of the process was possible in principle.


2005 ◽  
Vol 128 (2) ◽  
pp. 125-133 ◽  
Author(s):  
Martin Roeb ◽  
Christian Sattler ◽  
Ruth Klüser ◽  
Nathalie Monnerie ◽  
Lamark de Oliveira ◽  
...  

A promising method for the conversion and storage of solar energy into hydrogen is the dissociation of water into oxygen and hydrogen, carried out via a two-step process using metal oxide redox systems such as mixed iron oxides, coated upon multi-channeled honeycomb ceramic supports capable of absorbing solar irradiation, in a configuration similar to that encountered in automobile exhaust catalytic converters. With this configuration, the whole process can be carried out in a single solar energy converter, the process temperature can be significantly lowered compared to other thermo-chemical cycles and the recombination of oxygen and hydrogen is prevented by fixing the oxygen in the metal oxide. For the realization of the integrated concept, research work proceeded in three parallel directions: synthesis of active redox systems, manufacture of ceramic honeycomb supports and manufacture, testing and optimization of operating conditions of a thermochemical solar receiver-reactor. The receiver-reactor has been developed and installed in the solar furnace in Cologne, Germany. It was proven that solar hydrogen production is feasible by this process demonstrating that multicycling of the process was possible in principle.


Sign in / Sign up

Export Citation Format

Share Document