oxygenic phototrophs
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 288 (1959) ◽  
Author(s):  
G. P. Fournier ◽  
K. R. Moore ◽  
L. T. Rangel ◽  
J. G. Payette ◽  
L. Momper ◽  
...  

The record of the coevolution of oxygenic phototrophs and the environment is preserved in three forms: genomes of modern organisms, diverse geochemical signals of surface oxidation and diagnostic Proterozoic microfossils. When calibrated by fossils, genomic data form the basis of molecular clock analyses. However, different interpretations of the geochemical record, fossil calibrations and evolutionary models produce a wide range of age estimates that are often conflicting. Here, we show that multiple interpretations of the cyanobacterial fossil record are consistent with an Archean origin of crown-group Cyanobacteria. We further show that incorporating relative dating information from horizontal gene transfers greatly improves the precision of these age estimates, by both providing a novel empirical criterion for selecting evolutionary models, and increasing the stringency of sampling of posterior age estimates. Independent of any geochemical evidence or hypotheses, these results support oxygenic photosynthesis evolving at least several hundred million years before the Great Oxygenation Event (GOE), a rapid diversification of major cyanobacterial lineages around the time of the GOE, and a post-Cryogenian origin of extant marine picocyanobacterial diversity.


2021 ◽  
Author(s):  
Zhao-Feng Yuan ◽  
Tong-Yao Pu ◽  
Chen-Yu Jin ◽  
Wei-Jia Feng ◽  
Jia-Yue Wang ◽  
...  

Abstract Arsenic (As) pollution in paddy fields is a major threat to rice safety. Existing As remediation techniques are costly, require external chemical addition and degrade soil properties. Here, we report the use of plastic tubes as a recyclable tool to precisely extract As from contaminated soils. Following insertion into flooded paddy soils, polyethylene (PE) tube walls were covered by thin but massive Fe coatings of 76.9-367 mg Fe m-2 in 2 weeks, which adsorbed significant amounts of As as well as lead and antimony. The formation of tube-wall Fe oxides was driven by local Fe-oxidizing bacteria with oxygen produced by oxygenic phototrophs (e.g., Cyanobacteria) or diffused from air through the tube wall. The tubes with As-bound Fe oxides can be easily separated from soil and then recycled. We tested the As removal efficiency in a pilot experiment to remove As from ~ 20 cm depth / 80 kg soils in a two-year experiment and achieved an overall efficiency of 152 mg As m-2 soil year-1. The As accumulated in rice tissues was significantly decreased in the treatment. This work provides a low-cost and sustainable soil remediation method for the targeted removal of As from soils and a useful tool for the study and management of the biogeochemical Fe cycle in paddy soils.


Microbiology ◽  
2021 ◽  
Vol 167 (6) ◽  
Author(s):  
Indrani Sarker ◽  
Lisa R. Moore ◽  
Sasha G. Tetu

Marine plastic pollution is a growing concern worldwide and has the potential to impact marine life via leaching of chemicals, with zinc (Zn), a common plastic additive, observed at particularly high levels in plastic leachates in previous studies. At this time, however, little is known regarding how elevated Zn affects key groups of marine primary producers. Marine cyanobacterial genera Prochlorococcus and Synechococcus are considered to be some of the most abundant oxygenic phototrophs on earth, and together contribute significantly to oceanic primary productivity. Here we set out to investigate how two Prochlorococcus (MIT9312 and NATL2A) and two Synechococcus (CC9311 and WH8102) strains, representative of diverse ecological niches, respond to exposure to high Zn concentrations. The two genera showed differences in the timing and degree of growth and physiological responses to elevated Zn levels, with Prochlorococcus strains showing declines in their growth rate and photophysiology following exposure to 27 µg l−1 Zn, while Synechococcus CC9311 and WH8102 growth rates declined significantly on exposure to 52 and 152 µg l−1 Zn, respectively. Differences were also observed in each strain’s capacity to maintain cell wall integrity on exposure to different levels of Zn. Our results indicate that excess Zn has the potential to pose a challenge to some marine picocyanobacteria and highlights the need to better understand how different marine Prochlorococcus and Synechococcus strains may respond to increasing concentrations of Zn in some marine regions.


2021 ◽  
Vol 118 (20) ◽  
pp. e2104443118
Author(s):  
Weiqing Zhang ◽  
Robert D. Willows ◽  
Rui Deng ◽  
Zheng Li ◽  
Mengqi Li ◽  
...  

Biosyntheses of chlorophyll and heme in oxygenic phototrophs share a common trunk pathway that diverges with insertion of magnesium or iron into the last common intermediate, protoporphyrin IX. Since both tetrapyrroles are pro-oxidants, it is essential that their metabolism is tightly regulated. Here, we establish that heme-derived linear tetrapyrroles (bilins) function to stimulate the enzymatic activity of magnesium chelatase (MgCh) via their interaction with GENOMES UNCOUPLED 4 (GUN4) in the model green alga Chlamydomonas reinhardtii. A key tetrapyrrole-binding component of MgCh found in all oxygenic photosynthetic species, CrGUN4, also stabilizes the bilin-dependent accumulation of protoporphyrin IX-binding CrCHLH1 subunit of MgCh in light-grown C. reinhardtii cells by preventing its photooxidative inactivation. Exogenous application of biliverdin IXα reverses the loss of CrCHLH1 in the bilin-deficient heme oxygenase (hmox1) mutant, but not in the gun4 mutant. We propose that these dual regulatory roles of GUN4:bilin complexes are responsible for the retention of bilin biosynthesis in all photosynthetic eukaryotes, which sustains chlorophyll biosynthesis in an illuminated oxic environment.


2021 ◽  
Author(s):  
Amanda K. Garcia ◽  
Colleen M. Cavanaugh ◽  
Betul Kacar

AbstractThe oldest and most wide-ranging signal of biological activity (biosignature) on our planet is the carbon isotope composition of organic materials preserved in rocks. These biosignatures preserve the long-term evolution of the microorganism-hosted metabolic machinery responsible for producing deviations in the isotopic compositions of inorganic and organic carbon. Despite billions of years of ecosystem turnover, evolutionary innovation, organismic complexification, and geological events, the organic carbon that is a residuum of the global marine biosphere in the rock record tells an essentially static story. The ~25‰ mean deviation between inorganic and organic 13C/12C values has remained remarkably unchanged over >3.5 billion years. The bulk of this record is conventionally attributed to early-evolved, RuBisCO-mediated CO2 fixation that, in extant oxygenic phototrophs, produces comparable isotopic effects and dominates modern primary production. However, billions of years of environmental transition, for example, in the progressive oxygenation of the Earth’s atmosphere, would be expected to have accompanied shifts in the predominant RuBisCO forms as well as enzyme-level adaptive responses in RuBisCO CO2-specificity. These factors would also be expected to result in preserved isotopic signatures deviating from those produced by extant RuBisCO in oxygenic phototrophs. Why does the bulk carbon isotope record not reflect these expected environmental transitions and evolutionary innovations? Here, we discuss this apparent discrepancy and highlight the need for greater quantitative understanding of carbon isotope fractionation behavior in extant metabolic pathways. We propose novel, laboratory-based approaches to reconstructing ancestral states of carbon metabolisms and associated enzymes that can constrain isotopic biosignature production in ancient biological systems. Together, these strategies are crucial for integrating the complementary toolsets of biological and geological sciences and for interpretation of the oldest record of life on Earth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zach A. Diloreto ◽  
Sanchit Garg ◽  
Tomaso R. R. Bontognali ◽  
Maria Dittrich

AbstractThe “Dolomite Problem” has been a controversy for over a century, owing to massive assemblages of low-temperature dolomite in ancient rocks with little dolomite forming today despite favorable geochemical conditions. Experiments show that microbes and their exopolymeric substances (EPS) nucleate dolomite. However, factors controlling ancient abundances of dolomite can still not be explained. To decode the enigma of ancient dolomite, we examined a modern dolomite forming environment, and found that a cyclic shift in microbial community between cyanobacteria and anoxygenic phototrophs creates EPS suited to dolomite precipitation. Specifically, EPS show an increased concentration of carboxylic functional groups as microbial composition cycles from cyanobacterial to anoxygenic phototroph driven communities at low-and high- salinity, respectively. Comparing these results to other low-T forming environments suggests that large turnover of organic material under anoxic conditions is an important driver of the process. Consequently, the shift in atmospheric oxygen throughout Earth’s history may explain important aspects of “The Dolomite Problem”. Our results provide new context for the interpretation of dolomite throughout Earth’s history.


Coral Reefs ◽  
2021 ◽  
Vol 40 (2) ◽  
pp. 275-282 ◽  
Author(s):  
Francesco Ricci ◽  
Alexander Fordyce ◽  
William Leggat ◽  
Linda L. Blackall ◽  
Tracy Ainsworth ◽  
...  

Author(s):  
Mayur Mausoom Phukan ◽  
Rupesh Kumar ◽  
Kuldeep Gupta ◽  
Pritam Bardhan ◽  
Nilutpal Bhuyan ◽  
...  

2020 ◽  
Vol 477 (12) ◽  
pp. 2313-2325 ◽  
Author(s):  
Guangyu E. Chen ◽  
C. Neil Hunter

The unique isocyclic E ring of chlorophylls contributes to their role as light-absorbing pigments in photosynthesis. The formation of the E ring is catalyzed by the Mg-protoporphyrin IX monomethyl ester cyclase, and the O2-dependent cyclase in prokaryotes consists of a diiron protein AcsF, augmented in cyanobacteria by an auxiliary subunit Ycf54. Here, we establish the composition of plant and algal cyclases, by demonstrating the in vivo heterologous activity of O2-dependent cyclases from the green alga Chlamydomonas reinhardtii and the model plant Arabidopsis thaliana in the anoxygenic photosynthetic bacterium Rubrivivax gelatinosus and in the non-photosynthetic bacterium Escherichia coli. In each case, an AcsF homolog is the core catalytic subunit, but there is an absolute requirement for an algal/plant counterpart of Ycf54, so the necessity for an auxiliary subunit is ubiquitous among oxygenic phototrophs. A C-terminal ∼40 aa extension, which is present specifically in green algal and plant Ycf54 proteins, may play an important role in the normal function of the protein as a cyclase subunit.


Sign in / Sign up

Export Citation Format

Share Document