Normal‐mode theory of underwater sound propagation from stationary multipole sources: results for a realistic sound‐speed profile

1975 ◽  
Vol 57 (5) ◽  
pp. 1052-1061 ◽  
Author(s):  
Anton J. Haug ◽  
Ronald D. Graves ◽  
H. Überall
2014 ◽  
Vol 577 ◽  
pp. 1198-1201
Author(s):  
Zhang Liang ◽  
Chun Xia Meng ◽  
Hai Tao Xiao

The physical characteristics are compared between shallow and deep water, in physics and acoustics, respectively. There is a specific sound speed profile in deep water, which is different from which in shallow water, resulting in different sound propagation law between them. In this paper, the sound field distributions are simulated under respective typical sound speed profile. The color figures of sound intensity are obtained, in which the horizontal ordinate is distance, and the vertical ordinate is depth. Then we can get some important characteristics of sound propagation. The results show that the seabed boundary is an important influence on sound propagation in shallow water, and sound propagation loss in deep water convergent zone is visibly less than which in spherical wave spreading. We can realize the remote probing using the acoustic phenomenon.


1995 ◽  
Vol 98 (5) ◽  
pp. 2924-2925
Author(s):  
Michael J. White ◽  
Y. L. Li ◽  
Jianfeng Tai

2013 ◽  
Vol 385-386 ◽  
pp. 514-517 ◽  
Author(s):  
Liang Zhang ◽  
Chun Xia Meng ◽  
Jian Na

In shallow water the acoustic wave from ambient noise sources carries a large number of environment information based on the complicated reflection both on the surface and seabed interface. The sound speed profile is one of the influencing factors of sound propagation characteristic, while for a long distance the sound absorption coefficient of water medium has an important significance to propagation range. The simulation results show that in shallow water sound absorption of seabed, sound speed profile and sound absorption of water were taken into account, then range prediction of active sonar can be exactly obtained using normal-mode propagation.


2021 ◽  
Author(s):  
Yuyao Liu ◽  
Wen Chen ◽  
Wei Chen ◽  
Yu Chen ◽  
Lina Ma ◽  
...  

2017 ◽  
Vol 25 (02) ◽  
pp. 1750026 ◽  
Author(s):  
L. Su ◽  
L. Ma ◽  
S. M. Guo

The effect of sound speed profile (SSP) mismatch on source localization in shallow-water waveguides with a typical negative gradient (or thermocline) is studied numerically and experimentally. The results are interpreted using a normal mode model and a ray model. It is found that a matched-field processor is insensitive to SSP mismatch for sources above the thermocline. In addition, the sensitivity of the processor to SSP mismatch increases with the depth of sources above the thermocline.


Sign in / Sign up

Export Citation Format

Share Document