sound speed profile
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 29)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 9 (11) ◽  
pp. 1233
Author(s):  
Yuyao Liu ◽  
Wei Chen ◽  
Yu Chen ◽  
Wen Chen ◽  
Lina Ma ◽  
...  

As one of the most common mesoscale phenomena in the ocean, the ocean front is defined as a narrow transition zone between two water masses with obviously different properties. In this study, we proposed an ocean front reconstruction method based on the K-means algorithm iterative hierarchical clustering sound speed profile (SSP). This method constructed the frontal zone from the perspective of SSP. Meanwhile, considering that acoustic ray tracing is a very sensitive tool for detecting the location of ocean fronts because of the strong dependence of the transmission loss (TL) on SSP structure, this paper verified the feasibility of the method from the perspective of the TL calculation. Compared with other existing methods, this method has the key step of iterative hierarchical clustering according to the accuracy of clustering results. The results of iterative hierarchical clustering of the SSP can reconstruct the ocean front. Using this method, we reconstructed the ocean front in the Gulf Stream-related sea area and obtained the three-dimensional structure of the Gulf Stream front (GSF). The three-dimensional structure was divided into seven layers in the depth range of 0–1000 m. Iterative hierarchical clustering SSP by K-means algorithm provides a new method for judging the frontal zone and reconstructing the geometric model of the ocean front in different depth ranges.


Author(s):  
A. D. Chowdhury ◽  
S. K. Bhattacharyya ◽  
C. P. Vendhan

The normal mode method is widely used in ocean acoustic propagation. Usually, finite difference and finite element methods are used in its solution. Recently, a method has been proposed for heterogeneous layered waveguides where the depth eigenproblem is solved using the classical Rayleigh–Ritz approximation. The method has high accuracy for low to high frequency problems. However, the matrices that appear in the eigenvalue problem for radial wavenumbers require numerical integration of the matrix elements since the sound speed and density profiles are numerically defined. In this paper, a technique is proposed to reduce the computational cost of the Rayleigh–Ritz method by expanding the sound speed profile in a Fourier series using nonlinear least square fit so that the integrals of the matrix elements can be computed in closed form. This technique is tested in a variety of problems and found to be sufficiently accurate in obtaining the radial wavenumbers as well as the transmission loss in a waveguide. The computational savings obtained by this approach is remarkable, the improvements being one or two orders of magnitude.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4774
Author(s):  
Karolina Zwolak ◽  
Łukasz Marchel ◽  
Aileen Bohan ◽  
Masanao Sumiyoshi ◽  
Jaya Roperez ◽  
...  

The accuracy of multibeam echosounder bathymetric measurement depends on the accuracy of the data of the sound speed layers within the water column. This is necessary for the correct modeling of ray bending. It is assumed that the sound speed layers are horizontal and static, according to the sound speed profile traditionally used in the depth calculation. In fact, the boundaries between varying water masses can be curved and oscillate. It is difficult to assess the parameters of these movements based on the sparse sampling of sound velocity profiles (SVP) collected through a survey; thus, alternative or augmented methods are needed to obtain information about water mass stratification for the time of a particular ping or a series of pings. The process of water column data collection and analysis is presented in this paper. The proposed method updates the sound speed profile by the automated detection of varying water mass boundaries, giving the option to adjust the SVP for each beam separately. This can increase the overall accuracy of a bathymetric survey and provide additional oceanographic data about the study area.


2021 ◽  
Author(s):  
Li Honglin ◽  
Li Qianqian ◽  
Yan Xian ◽  
Cao Shoulian ◽  
Ma Zhichuan ◽  
...  

2021 ◽  
Author(s):  
Yuyao Liu ◽  
Wen Chen ◽  
Wei Chen ◽  
Yu Chen ◽  
Lina Ma ◽  
...  

Author(s):  
Jiali Zhang ◽  
Liang Zhang ◽  
Anmin Zhang ◽  
Lianxin Zhang ◽  
Dong Li ◽  
...  

AbstractSound Speed Profile (SSP) affecting underwater acoustics is closely related to the temperature and the salinity fields. It is of great value to obtain the temperature and the salinity information through the high-precision sound speed profiles. In this paper, a data assimilation scheme by introducing sound speed profiles as a new constraint is proposed within the framework of 3DVAR data assimilation (referenced as SSP-constraint 3DVAR (SSPC-3DVAR) ), which aims at improving the analysis accuracy of initial fields of the temperature and salinity in coastal sea areas. In order to validate the performance of the new assimilation scheme, ideal experiments are firstly carried out to show the advantages of the new proposed SSPC-3DVAR. Then the temperature, the salinity, and the SSP observations from field experiments in a coastal area are assimilated into the Princeton Ocean Model to validate the performance of short-time forecasts, adopting the SSPC-3DVAR scheme. Results show that it is efficient to improve the estimate accuracy by as much as 14.6% (11.1%) for the temperature (salinity), compared with the standard 3DVAR. It demonstrates that the proposed SSPC-3DVAR approach works better in practice than the standard 3DVAR and will primarily benefit from variously and widely distributed observations in the future.


Oceanography ◽  
2021 ◽  
Vol 34 (2) ◽  
Author(s):  
Scott Loranger ◽  
David Barclay ◽  
Michael Buckingham

Since HMS Challenger made the first sounding in the Mariana Trench in 1875, scientists and explorers have been seeking to establish the exact location and depth of the deepest part of the ocean. The scientific consensus is that the deepest depth is situated in the Challenger Deep, an abyss in the Mariana Trench with depths greater than 10,000 m. Since1952, when HMS Challenger II, following its namesake, returned to the Mariana Trench, 20 estimates (including the one from this study) of the depth of the Challenger Deep have been made. The location and depth estimates are as diverse as the methods used to obtain them; they range from early measurements with explosives and stop watches, to single- and multi-beam sonars, to submersibles, both crewed and remotely operated. In December 2014, we participated in an expedition to the Challenger Deep onboard Schmidt Ocean Institute’s R/V Falkor and deployed two free-falling, passive-acoustic instrument platforms, each with a glass-sphere pressure housing containing system electronics. At a nominal depth of 9,000 m, one of these housings imploded, creating a highly energetic shock wave that, as recorded by the other instrument, reflected multiple times from the sea surface and seafloor. From the arrival times of these multi-path pulses at the surviving instrument, in conjunction with a concurrent measurement of the sound speed profile in the water column, we obtained a highly constrained acoustic estimate of the Challenger Deep: 10,983 ± 6 m.


Sign in / Sign up

Export Citation Format

Share Document