scholarly journals Hsp90 Binds and Regulates Gcn2, the Ligand-Inducible Kinase of the α Subunit of Eukaryotic Translation Initiation Factor 2

2000 ◽  
Vol 20 (5) ◽  
pp. 1897-1897
Author(s):  
Olivier Donzé ◽  
Didier Picard
2006 ◽  
Vol 172 (2) ◽  
pp. 201-209 ◽  
Author(s):  
Stefan J. Marciniak ◽  
Lidia Garcia-Bonilla ◽  
Junjie Hu ◽  
Heather P. Harding ◽  
David Ron

Regulated phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α) by the endoplasmic reticulum (ER) stress-activated protein kinase PERK modulates protein synthesis and couples the production of ER client proteins with the organelle's capacity to fold and process them. PERK activation by ER stress is known to involve transautophosphorylation, which decorates its unusually long kinase insert loop with multiple phosphoserine and phosphothreonine residues. We report that PERK activation and phosphorylation selectively enhance its affinity for the nonphosphorylated eIF2 complex. This switch correlates with a marked change to the protease sensitivity pattern, which is indicative of a major conformational change in the PERK kinase domain upon activation. Although it is dispensable for catalytic activity, PERK's kinase insert loop is required for substrate binding and for eIF2α phosphorylation in vivo. Our findings suggest a novel mechanism for eIF2 recruitment by activated PERK and for unidirectional substrate flow in the phosphorylation reaction.


2010 ◽  
Vol 30 (12) ◽  
pp. 2862-2873 ◽  
Author(s):  
Vera Cherkasova ◽  
Hongfang Qiu ◽  
Alan G. Hinnebusch

ABSTRACT Snf1 is the ortholog of mammalian AMP-activated kinase and is responsible for activation of glucose-repressed genes at low glucose levels in budding yeast. We show that Snf1 promotes the formation of phosphorylated α subunit of eukaryotic translation initiation factor 2 (eIF2α-P), a regulator of general and gene-specific translation, by stimulating the function of eIF2α kinase Gcn2 during histidine starvation of glucose-grown cells. Thus, eliminating Snf1 or mutating its activation loop lowers Gcn2 kinase activity, reducing the autophosphorylation of Thr-882 in the Gcn2 activation loop, and decreases eIF2α-P levels in starved cells. Consistently, eliminating Reg1, a negative regulator of Snf1, provokes Snf1-dependent hyperphosphorylation of both Thr-882 and eIF2α. Interestingly, Snf1 also promotes eIF2α phosphorylation in the nonpreferred carbon source galactose, but this occurs by inhibition of protein phosphatase 1α (PP1α; Glc7) and the PP2A-like enzyme Sit4, rather than activation of Gcn2. Both Glc7 and Sit4 physically interact with eIF2α in cell extracts, supporting their direct roles as eIF2α phosphatases. Our results show that Snf1 modulates the level of eIF2α phosphorylation by different mechanisms, depending on the kind of nutrient deprivation existing in cells.


Sign in / Sign up

Export Citation Format

Share Document