alpha subunit
Recently Published Documents


TOTAL DOCUMENTS

1880
(FIVE YEARS 73)

H-INDEX

108
(FIVE YEARS 3)

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 131
Author(s):  
Xiaohui Li ◽  
Meidong Zhang ◽  
Chen Ling ◽  
Hang Sha ◽  
Guiwei Zou ◽  
...  

As an economically and ecologically important freshwater fish, silver carp (Hypophthalmichthys molitrix) is sensitive to low oxygen tension. Prolyl hydroxylase domain (PHD) proteins are critical regulators of adaptive responses to hypoxia for their function of regulating the hypoxia inducible factor-1 alpha subunit (HIF-1α) stability via hydroxylation reaction. In the present study, three PHD genes were cloned from H. molitrix by rapid amplification of cDNA ends (RACE). The total length of HmPHD1, HmPHD2, and HmPHD3 were 2981, 1954, and 1847 base pair (bp), and contained 1449, 1080, and 738 bp open reading frames (ORFs) that encoded 482, 359, and 245 amino acids (aa), respectively. Amino acid sequence analysis showed that HmPHD1, HmPHD2, and HmPHD3 had the conserved prolyl 4-hydroxylase alpha subunit homolog domains at their C-termini. Meanwhile, the evaluation of phylogeny revealed PHD2 and PHD3 of H. molitrix were more closely related as they belonged to sister clades, whereas the clade of PHD1 was relatively distant from these two. The transcripts of PHD genes are ubiquitously distributed in H. molitrix tissues, with the highest expressional level of HmPHD1 and HmPHD3 in liver, and HmPHD2 in muscle. After acute hypoxic treatment for 0.5 h, PHD genes of H. molitrix were induced mainly in liver and brain, and different from HmPHD1 and HmPHD2, the expression of HmPHD3 showed no overt tissue specificity. Furthermore, under continued hypoxic condition, PHD genes exhibited an obviously rapid but gradually attenuated response from 3 h to 24 h, and upon reoxygenation, the transcriptional expression of PHD genes showed a decreasing trend in most of the tissues. These results indicate that the PHD genes of H. molitrix are involved in the early response to hypoxic stress, and they show tissue-specific transcript expression when performing physiological regulation functions. This study is of great relevance for advancing our understanding of how PHD genes are regulated when addressing the hypoxic challenge and provides a reference for the subsequent research of the molecular mechanisms underlying hypoxia adaptation in silver carp.


Rice Science ◽  
2021 ◽  
Vol 28 (6) ◽  
pp. 557-566
Author(s):  
Wang Tao ◽  
Lou Lijuan ◽  
Li Zeyu ◽  
Shang Lianguang ◽  
Wang Quan
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shu-Wen Xue ◽  
Yue-Xin Tian ◽  
Jin-Cheng Pan ◽  
Ya-Ni Liu ◽  
Yan-Ling Ma

AbstractPseudomonas aeruginosa DN1 can efficiently utilize fluoranthene as its sole carbon source, and the initial reaction in the biodegradation process is catalyzed by a ring-hydroxylating dioxygenase (RHD). To clarify the binding interaction of RHD with fluoranthene in the strain DN1, the genes encoding alpha subunit (RS30940) and beta subunit (RS05115) of RHD were functionally characterized through multi-technique combination such as gene knockout and homology modeling as well as molecular docking analysis. The results showed that the mutants lacking the characteristic alpha subunit and/or beta subunit failed to degrade fluoranthene effectively. Based on the translated protein sequence and Ramachandran plot, 96.5% of the primary amino-acid sequences of the alpha subunit in the modeled structure of the RHD were in the permitted region, 2.3% in the allowed region, but 1.2% in the disallowed area. The catalytic mechanism mediated by key residues was proposed by the simulations of molecular docking, wherein the active site of alpha subunit constituted a triangle structure of the mononuclear iron atom and the two oxygen atoms coupled with the predicted catalytic ternary of His217-His222-Asp372 for the dihydroxylation reaction with fluoranthene. Those amino acid residues adjacent to fluoranthene were nonpolar groups, and the C7-C8 positions on the fluoranthene ring were estimated to be the best oxidation sites. The distance of C7-O and C8-O was 3.77 Å and 3.04 Å respectively, and both of them were parallel. The results of synchronous fluorescence and site-directed mutagenesis confirmed the roles of the predicted residues during catalysis. This binding interaction could enhance our understanding of the catalytic mechanism of RHDs and provide a solid foundation for further enzymatic modification.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6479
Author(s):  
Selvakumari Ulagesan ◽  
Taek-Jeong Nam ◽  
Youn-Hee Choi

Phycoerythrin is a major light-harvesting pigment of red algae and cyanobacteria that is widely used as a fluorescent probe or as a colorant in the food and cosmetic industries. In this study, phycoerythrin was extracted from the red algae Pyropia yezoensis and purified by ammonium sulfate precipitation and various chromatography methods. The purified phycoerythrin was analyzed by UV-visible and fluorescence spectroscopy. The isolated pigment had the typical spectrum of R-phycoerythrin, with a trimmer state with absorbance maxima at 497, 536, and 565 nm. It was further purified and identified by LC-MS/MS and Mascot search. It showed a 100% sequence similarity with the R-phycoerythrin alpha subunit of Pyropia yezoensis. The molecular mass was 17.97 kDa. The antioxidant activity of the purified R-phycoerythrin alpha subunit was analyzed. It showed significant antioxidant activity in ABTS and FRAP assays and had significant cytotoxicity against HepG2 cells.


2021 ◽  
Author(s):  
Jaroslava Seflova ◽  
Nima R. Habibi ◽  
John Q. Yap ◽  
Sean R. Cleary ◽  
Xuan Fang ◽  
...  

The sodium-potassium ATPase (NKA) establishes ion gradients that facilitate many physiological processes. In the heart, NKA activity is regulated by its interaction with phospholemman (PLM, FXYD1). Here we used a novel fluorescence lifetime-based assay to investigate the structure, stoichiometry, and affinity of the NKA-PLM regulatory complex. We observed concentration dependent association of the subunits of NKA-PLM regulatory complex, with avid association of the alpha subunit with the essential beta subunit followed by lower affinity alpha-alpha and alpha-PLM interactions. The data provide the first evidence that the regulatory complex is composed of two alpha subunits associated with two beta subunits, decorated with two PLM regulatory subunits in intact cells. Docking and molecular dynamics simulations generated a structural model of the complex that is consistent with our experimental observations. We propose that alpha-alpha subunit interactions support conformational coupling of the catalytic subunits, which may enhance NKA turnover rate. These observations provide insight into the pathophysiology of heart failure, wherein low NKA expression may be insufficient to support formation of the complete regulatory complex with stoichiometry (alpha-beta-PLM)2.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Mami Ishibashi

Dupilumab is a monoclonal antibody against the alpha subunit of the interleukin (IL)-4 receptor that inhibits IL-4 and IL-13 signaling, which plays a central role in Th2 inflammation in AD.Here, we report the first Asian case of psoriasis unexpectedly induced by dupilumab therapy for AD. Compared with European and American AD phenotype, Asian AD phenotype is characterized by changes in the psoriasiform phenotype, associating with higher Th17 activation. The blockade of IL-4/IL-13 signaling by dupilumab may induce psoriasis eruption corresponding to shift from a Th2- to Th17- mediated inflammatory response in the skin.


2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding sodium voltage-gated channel alpha subunit 7, SCN7A, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. SCN7A expression was significantly lower in high-grade serous ovarian tumors relative to normal fallopian tube. SCN7A expression correlated with overall survival in patients with ovarian cancer. These data indicate that expression of SCN7A is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. SCN7A may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


Sign in / Sign up

Export Citation Format

Share Document