Speed of Convergence of the Distribution of the Maximum of Sums of Independent Random Variables to a Limit Distribution

1966 ◽  
Vol 11 (3) ◽  
pp. 438-441 ◽  
Author(s):  
B. A. Rogozin
2012 ◽  
Vol 49 (3) ◽  
pp. 883-887 ◽  
Author(s):  
Offer Kella

The goal is to identify the class of distributions to which the distribution of the maximum of a Lévy process with no negative jumps and negative mean (equivalently, the stationary distribution of the reflected process) belongs. An explicit new distributional identity is obtained for the case where the Lévy process is an independent sum of a Brownian motion and a general subordinator (nondecreasing Lévy process) in terms of a geometrically distributed sum of independent random variables. This generalizes both the distributional form of the standard Pollaczek-Khinchine formula for the stationary workload distribution in the M/G/1 queue and the exponential stationary distribution of a reflected Brownian motion.


1950 ◽  
Vol 2 ◽  
pp. 375-384 ◽  
Author(s):  
Mark Kac ◽  
Harry Pollard

1. The problem. It has been shown [1] that if Xi, + X2, … are independent random variables each of density then(1.1)


1975 ◽  
Vol 12 (S1) ◽  
pp. 29-37
Author(s):  
Lajos Takács

The author determines the distribution and the limit distribution of the number of partial sums greater than k (k = 0, 1, 2, …) for n mutually independent and identically distributed discrete random variables taking on the integers 1, 0, − 1, − 2, ….


Sign in / Sign up

Export Citation Format

Share Document