Reduction of a Set of Matrices over a Principal Ideal Domain to the Smith Normal Forms by Means of the Same One-Sided Transformations

Author(s):  
V. M. Prokip
Author(s):  
Volodymyr Prokip

In this paper we present conditions of solvability of the matrix equation AXB = B over a principal ideal domain. The necessary and sufficient conditions of solvability of equation AXB = B in term of the Smith normal forms and in term of the Hermi-te normal forms of matrices constructed in a certain way by using the coefficients of this equation are proposed. If a solution of this equation exists we propose the method for its construction.


2013 ◽  
Vol 29 (2) ◽  
pp. 267-273
Author(s):  
MIHAIL URSUL ◽  
◽  
MARTIN JURAS ◽  

We prove that every infinite nilpotent ring R admits a ring topology T for which (R, T ) has an open totally bounded countable subring with trivial multiplication. A new example of a compact ring R for which R2 is not closed, is given. We prove that every compact Bezout domain is a principal ideal domain.


1980 ◽  
Vol 32 (1) ◽  
pp. 240-245 ◽  
Author(s):  
Robert C. Thompson

Let R be a principal ideal domain, i.e., a commutative ring without zero divisors in which every ideal is principal. The invariant factors of a matrix A with entries in R are the diagonal elements when A is converted to a diagonal form D = UAV, where U, V have entries in R and are unimodular (invertible over R), and the diagonal entries d1 …, dn of D form a divisibility chain: d1|d2| … |dn. Very little has been proved about how invariant factors may change when matrices are added. This is in contrast to the corresponding question for matrix multiplication, where much information is now available [6].


1971 ◽  
Vol 5 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Gilbert Baumslag

We establish the result that a finitely generated cyclic extension of a free group is residually finite. This is done, in part, by making use of the fact that a finitely generated module over a principal ideal domain is a direct sum of cyclic modules.


1969 ◽  
Vol 10 (3-4) ◽  
pp. 395-402 ◽  
Author(s):  
W. D. Wallis

Throughout this paper g is a finite group and f is a complete local principal ideal domain of characteristic p where p divides |g|. The notations of [5] are adopted; moreover we shall denote the isomorphism-class of an f g-representation module ℳ by M, the class of ℳx by Mx and the class of ℳR by MR for suitable groups K and R.


Sign in / Sign up

Export Citation Format

Share Document