diagonal form
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 31)

H-INDEX

15
(FIVE YEARS 1)

Author(s):  
Dong-Won Jung ◽  
U-Rae Kim ◽  
Jungil Lee ◽  
Chaehyun Yu ◽  

AbstractWe solve the eigenproblem of the angular momentum $$J_x$$ J x by directly dealing with the non-diagonal matrix unlike the conventional approach rotating the trivial eigenstates of $$J_z$$ J z . Characteristic matrix is reduced into a tri-diagonal form following Narducci–Orszag rescaling of the eigenvectors. A systematic reduction formalism with recurrence relations for determinants of any dimension greatly simplifies the computation of tri-diagonal matrices. Thus the secular determinant is intrinsically factorized to find the eigenvalues immediately. The reduction formalism is employed to find the adjugate of the characteristic matrix. Improving the recently introduced Lagrange-multiplier regularization, we identify that every column of that adjugate matrix is indeed the eigenvector. It is remarkable that the approach presented in this work is completely new and unique in that any information of $$J_z$$ J z is not required and only algebraic operations are involved. Collapsing of the large amount of determinant calculation with the recurrence relation has a wide variety of applications to other tri-diagonal matrices appearing in various fields. This new formalism should be pedagogically useful for treating the angular momentum problem that is central to quantum mechanics course.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 577
Author(s):  
Shouzhen Gu ◽  
Rolando D. Somma ◽  
Burak Şahinoğlu

We investigate the problem of fast-forwarding quantum evolution, whereby the dynamics of certain quantum systems can be simulated with gate complexity that is sublinear in the evolution time. We provide a definition of fast-forwarding that considers the model of quantum computation, the Hamiltonians that induce the evolution, and the properties of the initial states. Our definition accounts for any asymptotic complexity improvement of the general case and we use it to demonstrate fast-forwarding in several quantum systems. In particular, we show that some local spin systems whose Hamiltonians can be taken into block diagonal form using an efficient quantum circuit, such as those that are permutation-invariant, can be exponentially fast-forwarded. We also show that certain classes of positive semidefinite local spin systems, also known as frustration-free, can be polynomially fast-forwarded, provided the initial state is supported on a subspace of sufficiently low energies. Last, we show that all quadratic fermionic systems and number-conserving quadratic bosonic systems can be exponentially fast-forwarded in a model where quantum gates are exponentials of specific fermionic or bosonic operators, respectively. Our results extend the classes of physical Hamiltonians that were previously known to be fast-forwarded, while not necessarily requiring methods that diagonalize the Hamiltonians efficiently. We further develop a connection between fast-forwarding and precise energy measurements that also accounts for polynomial improvements.


Author(s):  
Piergiulio Tempesta ◽  
Giorgio Tondo

AbstractWe propose a new, infinite class of brackets generalizing the Frölicher–Nijenhuis bracket. This class can be reduced to a family of generalized Nijenhuis torsions recently introduced. In particular, the Haantjes bracket, the first example of our construction, is relevant in the characterization of Haantjes moduli of operators. We also prove that the vanishing of a higher-level Nijenhuis torsion of an operator field is a sufficient condition for the integrability of its eigen-distributions. This result (which does not require any knowledge of the spectral properties of the operator) generalizes the celebrated Haantjes theorem. The same vanishing condition also guarantees that the operator can be written, in a local chart, in a block-diagonal form.


Author(s):  
Jason L. Pereira ◽  
Leonardo Banchi ◽  
Stefano Pirandola

An important theorem in Gaussian quantum information tells us that we can diagonalize the covariance matrix of any Gaussian state via a symplectic transformation. While the diagonal form is easy to find, the process for finding the diagonalizing symplectic can be more difficult, and a common, existing method requires taking matrix powers, which can be demanding analytically. Inspired by a recently presented technique for finding the eigenvectors of a Hermitian matrix from certain submatrix eigenvalues, we derive a similar method for finding the diagonalizing symplectic from certain submatrix determinants, which could prove useful in Gaussian quantum information.


Author(s):  
Katsuhisa Ozaki ◽  
Takeshi Ogita

AbstractThis paper concerns test matrices for numerical linear algebra using an error-free transformation of floating-point arithmetic. For specified eigenvalues given by a user, we propose methods of generating a matrix whose eigenvalues are exactly known based on, for example, Schur or Jordan normal form and a block diagonal form. It is also possible to produce a real matrix with specified complex eigenvalues. Such test matrices with exactly known eigenvalues are useful for numerical algorithms in checking the accuracy of computed results. In particular, exact errors of eigenvalues can be monitored. To generate test matrices, we first propose an error-free transformation for the product of three matrices YSX. We approximate S by ${S^{\prime }}$ S ′ to compute ${YS^{\prime }X}$ Y S ′ X without a rounding error. Next, the error-free transformation is applied to the generation of test matrices with exactly known eigenvalues. Note that the exactly known eigenvalues of the constructed matrix may differ from the anticipated given eigenvalues. Finally, numerical examples are introduced in checking the accuracy of numerical computations for symmetric and unsymmetric eigenvalue problems.


Acoustics ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 581-594
Author(s):  
Art J. R. Pelling ◽  
Ennes Sarradj

State-space models have been successfully employed for model order reduction and control purposes in acoustics in the past. However, due to the cubic complexity of the singular value decomposition, which makes up the core of many subspace system identification (SSID) methods, the construction of large scale state-space models from high-dimensional measurement data has been problematic in the past. Recent advances of numerical linear algebra have brought forth computationally efficient randomized rank-revealing matrix factorizations and it has been shown that these factorizations can be used to enhance SSID methods such as the Eigensystem Realization Algorithm (ERA). In this paper, we demonstrate the applicability of the so-called generalized ERA to acoustical systems and high-dimensional input data by means of an example. Furthermore, we introduce a new efficient method of forced response computation that relies on a state-space model in quasi-diagonal form. Numerical experiments reveal that our proposed method is more efficient than previous state-space methods and can even outperform frequency domain convolutions in certain scenarios.


2021 ◽  
Author(s):  
Jiming Song ◽  
Praveen Gurrala ◽  
Ron Roberts

Author(s):  
R.P. Simonyants ◽  
N.A. Alekhin ◽  
V.A. Tarasov

A simplified model of a transformable spacecraft is considered, including a rod-type transformation mechanism with movable weights. The mechanism can be used to adapt the dynamic properties of the spacecraft to the environment or the operating conditions of on-board systems, for example, to counter the moments of external disturbances during attitude control and angular stabilization. By changing the position of the transformation mechanism, the spacecraft inertia tensor can be put in diagonal form, which makes it possible to exclude the force interconnections between the channels and to eliminate the constant component of the gravitational moment. For a simplified model of the transformation mechanism, we establish the analytical dependence of the components of the inertia tensor on the parameters determining the position of the transformation mechanism. It is shown that by adjusting the moving mass, which is 0.5% of the entire spacecraft mass, we obtain the spacecraft configuration that ensures the diagonality of the inertia tensor.


Vestnik MGTU ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 160-167
Author(s):  
Yuri Leonidovich Voytekhovsky ◽  
Alena Alexandrovna Zakharova

In addition to the standard description of the structures and textures of crystalline rocks the mathematical approaches have been proposed based on a rigorous determination of the petrographic structure through the probabilities of binary intergrain contacts. In general, the petrographic structure is defined as an invariant aspect of rock organization, algebraically expressed by the canonical diagonal form of the symmetric Pij matrix and geometrically visualized by structural indicatrices - surfaces of the 2nd order. The agreed nomenclature of possible petrographic structures for an n-mineral rock is simple: the symbol Snm means that there are exactly m positive numbers in the canonical diagonal form of the Pij matrix. New types of barycentric diagrams have been proposed. To describe the massive texture, the concept of Hardy - Weinberg equilibrium has been proposed. This boundary classifies barycentric diagrams into areas within which canonical types of Рij matrices and topological types of structural indicatrices are preserved. The change in the organization of the rock within a type is quantitative, the transition from one type to another means structural restructuring. The methods are used to describe ijolites and urtites of the Khibiny massif, the Kola Peninsula. In the modern taxonomy of rocks, the boundaries between them are mostly conditional and are drawn according to the contents of rock-forming minerals, for example, between ijolites and urtites - according to the contents of nepheline and pyroxene. The strict definition of the petrographic structure proposed by the authors makes it possible to introduce into petrography the constitutional principle (structure + composition), which is successfully acting in mineralogy.


Author(s):  
Martin Gugat ◽  
Jan Giesselmann

The flow of gas through a pipeline network can be modelled by a coupled system of 1-d quasilinear  hyperbolic equations. Often for the solution of control problems it is convenient  to replace the quasilinear model by a simpler semilinear model. We analyze the behavior of such a semilinear model on a star-shaped network. The model is  derived from the diagonal form of the quasilinear model by replacing the eigenvalues by the sound speed multiplied by  1 or -1 respectively, thus neglecting the influence of the gas velocity which is justified in the applications since it is much smaller than the sound speed. For a star-shaped network of pipes we present boundary feedback laws that stabilize the system state exponentially fast to a position of rest for sufficiently small initial data. We show the exponential decay of the $L^2$-norm for arbitrarily long  pipes. This is remarkable  since in general even for linear systems, for certain source terms the system can become exponentially unstable if  the space interval is too long. Our proofs are based upon an observability inequality and  suitably chosen Lyapunov functions. Numerical examples including  a comparison of the semilinear and the  quasilinear model are presented.


Sign in / Sign up

Export Citation Format

Share Document