Itô formula for an integro-differential operator without an associated stochastic process

Author(s):  
R. Léandre
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xichao Sun ◽  
Rui Guo ◽  
Ming Li

Let B = B t 1 , … , B t d t ≥ 0 be a d -dimensional bifractional Brownian motion and R t = B t 1 2 + ⋯ + B t d 2 be the bifractional Bessel process with the index 2 HK ≥ 1 . The Itô formula for the bifractional Brownian motion leads to the equation R t = ∑ i = 1 d ∫ 0 t B s i / R s d B s i + HK d − 1 ∫ 0 t s 2 HK − 1 / R s d s . In the Brownian motion case K = 1 and H = 1 / 2 , X t ≔ ∑ i = 1 d ∫ 0 t B s i / R s d B s i ,   d ≥ 1 is a Brownian motion by Lévy’s characterization theorem. In this paper, we prove that process X t is not a bifractional Brownian motion unless K = 1 and H = 1 / 2 . We also study some other properties and their application of this stochastic process.


2002 ◽  
Vol 31 (8) ◽  
pp. 477-496
Author(s):  
Said Ngobi

The classical Itô formula is generalized to some anticipating processes. The processes we consider are in a Sobolev space which is a subset of the space of square integrable functions over a white noise space. The proof of the result uses white noise techniques.


2002 ◽  
Vol 124 (1) ◽  
pp. 73-99 ◽  
Author(s):  
Kimberly Kinateder ◽  
Patrick McDonald

Author(s):  
K. L. Chung ◽  
R. J. Williams
Keyword(s):  

2002 ◽  
Vol 188 (1) ◽  
pp. 292-315 ◽  
Author(s):  
Michael Anshelevich

1992 ◽  
Vol 29 (01) ◽  
pp. 216-221
Author(s):  
Wilfrid S. Kendall

The Itô formula is the fundamental theorem of stochastic calculus. This short note presents a new proof of Itô's formula for the case of continuous semimartingales. The new proof is more geometric than previous approaches, and has the particular advantage of generalizing immediately to the multivariate case without extra notational complexity.


Sign in / Sign up

Export Citation Format

Share Document