bifractional brownian motion
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 14)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Panhong Cheng ◽  
Zhihong Xu

In this paper, we study the valuation of European vulnerable options where the underlying asset price and the firm value of the counterparty both follow the bifractional Brownian motion with jumps, respectively. We assume that default event occurs when the firm value of the counterparty is less than the default boundary. By using the actuarial approach, analytic formulae for pricing the European vulnerable options are derived. The proposed pricing model contains many existing models such as Black–Scholes model (1973), Merton jump-diffusion model (1976), Klein model (1996), and Tian et al. model (2014).


2021 ◽  
Vol 3 (2) ◽  
pp. 59-67
Author(s):  
BA Demba Bocar

In this paper, we study several properties of the bifractional Brownian motion introduced by Houdr\'{e} and Villa.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 73
Author(s):  
Wensheng Wang ◽  
Dazhong Wang

We study the realized power variations for the fourth order linearized Kuramoto–Sivashinsky (LKS) SPDEs and their gradient, driven by the space–time white noise in one-to-three dimensional spaces, in time, have infinite quadratic variation and dimension-dependent Gaussian asymptotic distributions. This class was introduced-with Brownian-time-type kernel formulations by Allouba in a series of articles starting in 2006. He proved the existence, uniqueness, and sharp spatio-temporal Hölder regularity for the above class of equations in d=1,2,3. We use the relationship between LKS-SPDEs and the Houdré–Villaa bifractional Brownian motion (BBM), yielding temporal central limit theorems for LKS-SPDEs and their gradient. We use the underlying explicit kernels and spectral/harmonic analysis to prove our results. On one hand, this work builds on the recent works on the delicate analysis of variations of general Gaussian processes and stochastic heat equation driven by the space–time white noise. On the other hand, it builds on and complements Allouba’s earlier works on the LKS-SPDEs and their gradient.


2021 ◽  
Vol 7 (1) ◽  
pp. 1095-1114
Author(s):  
Huantian Xie ◽  
◽  
Nenghui Kuang ◽  

<abstract><p>We consider the nonergodic Gaussian Ornstein-Uhlenbeck processes of the second kind defined by $ dX_t = \theta X_tdt+dY_t^{(1)}, t\geq 0, X_0 = 0 $ with an unknown parameter $ \theta &gt; 0, $ where $ dY_t^{(1)} = e^{-t}dG_{a_{t}} $ and $ \{G_t, t\geq 0\} $ is a mean zero Gaussian process with the self-similar index $ \gamma\in (\frac{1}{2}, 1) $ and $ a_t = \gamma e^{\frac{t}{\gamma}} $. Based on the discrete observations $ \{X_{t_i}:t_i = i\Delta_n, i = 0, 1, \cdots, n\} $, two least squares type estimators $ \hat{\theta}_n $ and $ \tilde{\theta}_n $ of $ \theta $ are constructed and proved to be strongly consistent and rate consistent. We apply our results to the cases such as fractional Brownian motion, sub-fractional Brownian motion, bifractional Brownian motion and sub-bifractional Brownian motion. Moreover, the numerical simulations confirm the theoretical results.</p></abstract>


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xichao Sun ◽  
Rui Guo ◽  
Ming Li

Let B = B t 1 , … , B t d t ≥ 0 be a d -dimensional bifractional Brownian motion and R t = B t 1 2 + ⋯ + B t d 2 be the bifractional Bessel process with the index 2 HK ≥ 1 . The Itô formula for the bifractional Brownian motion leads to the equation R t = ∑ i = 1 d ∫ 0 t B s i / R s d B s i + HK d − 1 ∫ 0 t s 2 HK − 1 / R s d s . In the Brownian motion case K = 1 and H = 1 / 2 , X t ≔ ∑ i = 1 d ∫ 0 t B s i / R s d B s i ,   d ≥ 1 is a Brownian motion by Lévy’s characterization theorem. In this paper, we prove that process X t is not a bifractional Brownian motion unless K = 1 and H = 1 / 2 . We also study some other properties and their application of this stochastic process.


2020 ◽  
Vol 8 (4) ◽  
pp. 346-355
Author(s):  
Feng Xu

AbstractRecent empirical studies show that an underlying asset price process may have the property of long memory. In this paper, it is introduced the bifractional Brownian motion to capture the underlying asset of European options. Moreover, a bifractional Black-Scholes partial differential equation formulation for valuing European options based on Delta hedging strategy is proposed. Using the final condition and the method of variable substitution, the pricing formulas for the European options are derived. Furthermore, applying to risk-neutral principle, we obtain the pricing formulas for the compound options. Finally, the numerical experiments show that the parameter HK has a significant impact on the option value.


2020 ◽  
Vol 12 (1) ◽  
pp. 128-145
Author(s):  
Abdelmalik Keddi ◽  
Fethi Madani ◽  
Amina Angelika Bouchentouf

AbstractThe main objective of this paper is to investigate the problem of estimating the trend function St = S(xt) for process satisfying stochastic differential equations of the type {\rm{d}}{{\rm{X}}_{\rm{t}}} = {\rm{S}}\left( {{{\rm{X}}_{\rm{t}}}} \right){\rm{dt + }}\varepsilon {\rm{dB}}_{\rm{t}}^{{\rm{H,K}}},\,{{\rm{X}}_{\rm{0}}} = {{\rm{x}}_{\rm{0}}},\,0 \le {\rm{t}} \le {\rm{T,}}where {{\rm{B}}_{\rm{t}}^{{\rm{H,K}}},{\rm{t}} \ge {\rm{0}}} is a bifractional Brownian motion with known parameters H ∈ (0, 1), K ∈ (0, 1] and HK ∈ (1/2, 1). We estimate the unknown function S(xt) by a kernel estimator ̂St and obtain the asymptotic properties as ε → 0. Finally, a numerical example is provided.


Sign in / Sign up

Export Citation Format

Share Document