scholarly journals CONVERGENCE OF FUBINI–STUDY CURRENTS FOR ORBIFOLD LINE BUNDLES

2013 ◽  
Vol 24 (07) ◽  
pp. 1350051 ◽  
Author(s):  
DAN COMAN ◽  
GEORGE MARINESCU

We discuss positive closed currents and Fubini–Study currents on orbifolds, as well as Bergman kernels of singular Hermitian orbifold line bundles. We prove that the Fubini–Study currents associated to high powers of a semipositive singular line bundle converge weakly to the curvature current on the set where the curvature is strictly positive, generalizing a well-known theorem of Tian. We include applications to the asymptotic distribution of zeros of random holomorphic sections.

2016 ◽  
Vol 27 (05) ◽  
pp. 1650042 ◽  
Author(s):  
Dano Kim

We first present a Skoda-type division theorem for holomorphic sections of line bundles on a projective variety which is essentially the most general, compared to previous ones. Then we revisit Geometric Effective Nullstellensatz and observe that even this general Skoda division is far from sufficient to yield stronger GEN such as ‘vanishing order [Formula: see text] division’, which could be used for finite generation of section rings by the basic finite generation lemma. To resolve this problem, we develop a notion of pseudo-division and show that it can replace the usual division in the finite generation lemma. We also give a vanishing order 1 pseudo-division result when the line bundle is ample.


2012 ◽  
Vol 2012 ◽  
pp. 1-21
Author(s):  
V. V. Andrievskii ◽  
H.-P. Blatt ◽  
R. K. Kovacheva

The distribution of zeros and poles of best rational approximants is well understood for the functions , . If is not holomorphic on , the distribution of the zeros of best rational approximants is governed by the equilibrium measure of under the additional assumption that the rational approximants are restricted to a bounded degree of the denominator. This phenomenon was discovered first for polynomial approximation. In this paper, we investigate the asymptotic distribution of zeros, respectively, -values, and poles of best real rational approximants of degree at most to a function that is real-valued, but not holomorphic on . Generalizations to the lower half of the Walsh table are indicated.


Author(s):  
Abel Díaz-González ◽  
Héctor Pijeira-Cabrera ◽  
Javier Quintero-Roba

AbstractThe first part of this paper complements previous results on characterization of polynomials of least deviation from zero in Sobolev p-norm ($$1<p<\infty $$ 1 < p < ∞ ) for the case $$p=1$$ p = 1 . Some relevant examples are indicated. The second part deals with the location of zeros of polynomials of least deviation in discrete Sobolev p-norm. The asymptotic distribution of zeros is established on general conditions. Under some order restriction in the discrete part, we prove that the n-th polynomial of least deviation has at least $$n-\mathbf {d}^*$$ n - d ∗ zeros on the convex hull of the support of the measure, where $$\mathbf {d}^*$$ d ∗ denotes the number of terms in the discrete part.


2010 ◽  
Vol 21 (01) ◽  
pp. 77-115 ◽  
Author(s):  
ROBERT J. BERMAN

Let X be a domain in a closed polarized complex manifold (Y,L), where L is a (semi-) positive line bundle over Y. Any given Hermitian metric on L induces by restriction to X a Hilbert space structure on the space of global holomorphic sections on Y with values in the k-th tensor power of L (also using a volume form ωn on X. In this paper the leading large k asymptotics for the corresponding Bergman kernels and metrics are obtained in the case when X is a pseudo-concave domain with smooth boundary (under a certain compatibility assumption). The asymptotics are expressed in terms of the curvature of L and the boundary of X. The convergence of the Bergman metrics is obtained in a more general setting where (X,ωn) is replaced by any measure satisfying a Bernstein–Markov property. As an application the (generalized) equilibrium measure of the polarized pseudo-concave domain X is computed explicitly. Applications to the zero and mass distribution of random holomorphic sections and the eigenvalue distribution of Toeplitz operators will be described elsewhere.


Sign in / Sign up

Export Citation Format

Share Document