Hybrid Software Redundancy Approach for Building Reliable Communication in Multi-BUS Heterogeneous Systems

Author(s):  
Chafik Arar ◽  
Mohamed Salah Khireddine

The paper proposes a new reliable fault-tolerant scheduling algorithm for real-time embedded systems. The proposed algorithm is based on static scheduling that allows to include the dependencies and the execution cost of tasks and data dependencies in its scheduling decisions. Our scheduling algorithm is dedicated to multi-bus heterogeneous architectures with multiple processors linked by several shared buses. This scheduling algorithm is considering only one bus fault caused by hardware faults and compensated by software redundancy solutions. The proposed algorithm is based on both active and passive backup copies to minimize the scheduling length of data on buses. In the experiments, the proposed methods are evaluated in terms of data scheduling length for a set of DSP benchmarks. The experimental results show the effectiveness of our technique.

Author(s):  
Chafik Arar

In this article, the author uses a new variant of passive redundancy, which allows for a fictitious dual assignment by simultaneously scheduling two backup copies that overlap on the same communication bus at a given time. The proposed reliable fault tolerant greedy list scheduling algorithm is based on a superposed backup copy. This scheduling algorithm is considering up to n communication buses faults, caused by hardware faults and compensated by software redundancy solutions. it allows a reliable communication and efficient use of buses. In the experiments, the proposed methods are evaluated in terms of data scheduling length for a set of DSP benchmarks from the DSPstone.


2016 ◽  
Vol 16 (2) ◽  
pp. 69-84
Author(s):  
Chafik Arar ◽  
Mohamed Salah Khireddine

Abstract The paper proposes a new reliable fault-tolerant scheduling algorithm for real-time embedded systems. The proposed scheduling algorithm takes into consideration only one bus fault in multi-bus heterogeneous architectures, caused by hardware faults and compensated by software redundancy solutions. The proposed algorithm is based on both active and passive backup copies, to minimize the scheduling length of data on buses. In the experiments, this paper evaluates the proposed methods in terms of data scheduling length for a set of DAG benchmarks. The experimental results show the effectiveness of our technique.


2013 ◽  
Vol 32 (4) ◽  
pp. 935-937
Author(s):  
Yuan-wei GUO ◽  
Xue-mei XU ◽  
Jian-yang ZHANG ◽  
Zheng-yu HUANG ◽  
Lan NI

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Piyush Chauhan ◽  
Nitin

Due to monetary limitation, small organizations cannot afford high end supercomputers to solve highly complex tasks. P2P (peer to peer) grid computing is being used nowadays to break complex task into subtasks in order to solve them on different grid resources. Workflows are used to represent these complex tasks. Finishing such complex task in a P2P grid requires scheduling subtasks of workflow in an optimized manner. Several factors play their part in scheduling decisions. The genetic algorithm is very useful in scheduling DAG (directed acyclic graph) based task. Benefit of a genetic algorithm is that it takes into consideration multiple criteria while scheduling. In this paper, we have proposed a precedence level based genetic algorithm (PLBGSA), which yields schedules for workflows in a decentralized fashion. PLBGSA is compared with existing genetic algorithm based scheduling techniques. Fault tolerance is a desirable trait of a P2P grid scheduling algorithm due to the untrustworthy nature of grid resources. PLBGSA handles faults efficiently.


Sign in / Sign up

Export Citation Format

Share Document