Spatial pattern in a diffusive predator–prey model with sigmoid ratio-dependent functional response

2014 ◽  
Vol 07 (05) ◽  
pp. 1450047 ◽  
Author(s):  
Lakshmi Narayan Guin ◽  
Prashanta Kumar Mandal

In this paper, spatial patterns of a diffusive predator–prey model with sigmoid (Holling type III) ratio-dependent functional response which concerns the influence of logistic population growth in prey and intra-species competition among predators are investigated. The (local and global) asymptotic stability behavior of the corresponding non-spatial model around the unique positive interior equilibrium point in homogeneous steady state is obtained. In addition, we derive the conditions for Turing instability and the consequent parametric Turing space in spatial domain. The results of spatial pattern analysis through numerical simulations are depicted and analyzed. Furthermore, we perform a series of numerical simulations and find that the proposed model dynamics exhibits complex pattern replication. The feasible results obtained in this paper indicate that the effect of diffusion in Turing instability plays an important role to understand better the pattern formation in ecosystem.

2010 ◽  
Vol 18 (02) ◽  
pp. 437-453 ◽  
Author(s):  
A. K. MISRA ◽  
B. DUBEY

In this paper a predator-prey model with discrete delay and harvesting of predator is proposed and analyzed by considering ratio-dependent functional response. Conditions of existence of various equilibria and their stability have been discussed. By taking delay as a bifurcation parameter, the system is found to undergo a Hopf bifurcation. Numerical simulations are also performed to illustrate the results.


2018 ◽  
Vol 28 (07) ◽  
pp. 1850089 ◽  
Author(s):  
Walid Abid ◽  
R. Yafia ◽  
M. A. Aziz-Alaoui ◽  
Ahmed Aghriche

This paper is concerned with some mathematical analysis and numerical aspects of a reaction–diffusion system with cross-diffusion. This system models a modified version of Leslie–Gower functional response as well as that of the Holling-type II. Our aim is to investigate theoretically and numerically the asymptotic behavior of the interior equilibrium of the model. The conditions of boundedness, existence of a positively invariant set are proved. Criteria for local stability/instability and global stability are obtained. By using the bifurcation theory, the conditions of Hopf and Turing bifurcation critical lines in a spatial domain are proved. Finally, we carry out some numerical simulations in order to support our theoretical results and to interpret how biological processes affect spatiotemporal pattern formation which show that it is useful to use the predator–prey model to detect the spatial dynamics in the real life.


Sign in / Sign up

Export Citation Format

Share Document