MODIFICATION OF THE KANTOROVICH-TYPE CONDITIONS FOR NEWTON'S METHOD INVOLVING TWICE FRECHET DIFFERENTIABLE OPERATORS

2013 ◽  
Vol 06 (03) ◽  
pp. 1350026
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

We expand the applicability of Newton's method for approximating a locally unique solution of a nonlinear equation in a Banach space setting. The nonlinear operator involved is twice Fréchet differentiable. We introduce more precise majorizing sequences than in earlier studied (see [Concerning the convergence and application of Newton's method under hypotheses on the first and second Fréchet derivative, Comm. Appl. Nonlinear Anal.11 (2004) 103–119; A new semilocal convergence theorem for Newton's method, J. Comp. Appl. Math.79 (1997) 131–145; A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math.47 (1993) 211–217]). This way, our convergence criteria can be weaker; the error estimates tighter and the information on the location of the solution more precise. Numerical examples are presented to show that our results apply in cases not covered before such as [Concerning the convergence and application of Newton's method under hypotheses on the first and second Fréchet derivative, Comm. Appl. Nonlinear Anal.11 (2004) 103–119; A new semilocal convergence theorem for Newton's method, J. Comp. Appl. Math.79 (1997) 131–145; A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math.47 (1993) 211–217].

2016 ◽  
Vol 14 (02) ◽  
pp. 303-319
Author(s):  
Ioannis K. Argyros ◽  
Á. Alberto Magreñán

We present a semi-local convergence analysis of Newton’s method in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Using center-Lipschitz condition on the first and the second Fréchet derivatives, we provide under the same computational cost a new and more precise convergence analysis than in earlier studies by Huang [A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math. 47 (1993) 211–217] and Gutiérrez [A new semilocal convergence theorem for Newton’s method, J. Comput. Appl. Math. 79 (1997) 131–145]. Numerical examples where the old convergence criteria cannot apply to solve nonlinear equations but the new convergence criteria are satisfied are also presented at the concluding section of this paper.


2014 ◽  
Vol 07 (01) ◽  
pp. 1450007
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

We present a semilocal convergence analysis of Newton's method for sections on Riemannian manifolds. Using the notion of a 2-piece L-average Lipschitz condition introduced in [C. Li and J. H. Wang, Newton's method for sections on Riemannian manifolds: Generalized covariant α-theory, J. Complexity24 (2008) 423–451] in combination with the weaker center 2-piece L1-average Lipschitz condition given by us in this paper, we provide a tighter convergence analysis than the one given in [C. Li and J. H. Wang, Newton's method for sections on Riemannian manifolds: Generalized covariant α-theory, J. Complexity24 (2008) 423–451] which in turn has improved the works in earlier studies such as [R. L. Adler, J. P. Dedieu, J. Y. Margulies, M. Martens and M. Shub, Newton's method on Riemannian manifolds and a geometric model for the human spine, IMA J. Numer. Anal.22 (2002) 359–390; F. Alvarez, J. Bolte and J. Munier, A unifying local convergence result for Newton's method in Riemannian manifolds, Found. Comput. Math.8 (2008) 197–226; J. P. Dedieu, P. Priouret and G. Malajovich, Newton's method on Riemannian manifolds: Covariant α-theory, IMA J. Numer. Anal.23 (2003) 395–419].


2017 ◽  
Vol 23 (1) ◽  
pp. 79
Author(s):  
Leopoldo Paredes Soria ◽  
Pedro Canales García

Una nueva forma de convergencia de tipo Kantorovich para el me´todo de Newton es establecido para aproximarse localmente a una solucio´n u´nica de la ecuacio´n F (x) = 0 definido sobre un espacio de Banach. Se asume que el operador F es dos veces diferenciable Fre´chet, y que Fr, F rr satisface las condiciones de Lipschitz. Nuestra condicio´n de convergencia difiere de los me´todos conocidos y por lo tanto tiene un valor teo´rico y pra´ctico Palabras clave.-Operador lineal, Diferenciable Fre´chet, Sucesio´n convergente, Unicidad. ABSTRACTA new Kantorovich-type convergence theorem for Newton’s method is established for approximating a locally unique solution of an equation F (x) = 0 defined on a Banach space. It is assumed that the operator F is twice Fre´chet differentiable, and that Fr, F rr satisfy Lipschitz conditions. Our convergence condition differs from earlier ones and therefore it has theoretical and practical value. Keywords.-Linear operator, Differentiable Fre´chet, Convergent succession, Uniqueness.


2015 ◽  
Vol 23 (4) ◽  
Author(s):  
Petko D. Proinov ◽  
Stoil I. Ivanov

AbstractIn this paper we study the convergence of Halley’s method as a method for finding all zeros of a polynomial simultaneously. We present two types of local convergence theorems as well as a semilocal convergence theorem for Halley’s method for simultaneous computation of polynomial zeros.


Sign in / Sign up

Export Citation Format

Share Document